
CSE 142/143 Unofficial Style Guide

Below, things in GREEN are GOOD; things in RED are to be AVOIDED.

Commenting

Comment well. Follow the commenting rules for header, method, field, and inside-method
comments in the accompanying commenting guide.

Naming

Follow the following naming conventions for different types of variables.

Type of variable Formatting Examples
Class name Capitalized (first letter of

each word is uppercased)
MyProgram
CritterMain

Method/variable
name

camelCase (first letter
lowercase, each new word
uppercase)

greatMethod1()
String firstName
int countOfX

Class constant UPPER_CASE (words
separated by underscores)

MY_CONSTANT
MAX_SIZE

Name your variables and methods well. Try to be descriptive while also being concise. Avoid
generic names such as x, func, and stuff when a better name exists. Also try to avoid many
variables with similar names, such as temp1, temp2, and temp3. Single letter names are
almost always bad; however, there are certain situations, such as the i counter in a for loop,
where single-letter variables are the best option.

If you have a variable that holds the name of a musician, for example, then look at the following
table of possible names:

Variable Good or bad? Why?
n Bad Too short
text Bad Not descriptive
theNameOfThePersonWhoWritesTheMusic Bad Too long/complex
musicanName Good Descriptive, short

Formatting

• Keep lines under 100 characters in length, preferably under 80 characters. It is very difficult

to read (and grade) code when it is too long. This can mean that you have to split up a line of
code, or that you must put a comment on a line by itself rather than on the same line as the
code it refers to.

• Leave a blank line between methods. Don’t be afraid of the white space.

public void calculatePrime() {
 plusByOne();
}
 <-- Put a blank line here
public void plusByOne() {
 ...

• Put only one statement on a line.

Bad: int x = 3; int y = 4;
if (x == y) { foo(); }

Good: int x = 3;
int y = 4;
if (x == y) {
 foo();
}

• Leave spaces around all operators (+, -, *, /, =, &&, ||, !=, >, >=, <, <=). This

makes your code much easier to read.

Good: int x = 4 + 5;
boolean b = 4 > (4 * 2);

Bad: int x=4+5;
boolean b =4>(4*2);

• Leave no spaces before the parentheses in a method call.

Good: method1();
Bad: method1 ();

• Leave a space before opening curly braces.

Good: public static void calculatePrimes() {
 if (true) {
Bad: public static void calculatePrimes(){
 if (true){

• Indent every code block (the stuff inside any curly braces { }). Indent after every if,

while, and for statement even if you don't use curly braces. An indent is usually 3 or 4
spaces (choose one and stick with it).

public void addOdds(int times) {
 int sum = 0;
 for (int i = 0; i < times; i++) {

 if (times % 2 == 0)
 sum += i;
 }
}

• You can omit the curly braces after an if, while, or for if there is only one statement

inside it. However, I strongly discourage this. For consistency, always use curly braces. This
also helps prevent bugs that occur when you try to add a statement to a for-loop and forget
to add the curly braces.

• But overall: BE CONSISTENT. If for some reason you don't agree with my conventions
(which you should - these are generally accepted), for goodness sake be consistent within
your code!

Boolean zen

Booleans are cool because you don't always have to do all the testing with == and != that you do
with other types. Treat them like the true and false that they are. Remember that you can use
! to negate a boolean value, as in example 2 below.

If you have declared
 boolean isAlive;
then...

BAD GOOD

 if (isAlive == true) {
 eatFood();
 }

 if (isAlive) {
 eatFood();
 }

 return isAlive == false; return !isAlive;

 if (isAlive) {
 return true;
 } else {
 return false;
 }

 return isAlive;

Variable/field guidelines

• Fields should always be private, unless specifically stated otherwise. However, class

constants (which have the keywords static final in their declaration and cannot be
changed) can be public.

Good: private String name;
public static final String NAME;

Bad: public String name;

• If a value doesn’t change when your code runs, or you find a number that appears repeatedly

in your code and doesn’t change, declare a class constant and give it a name. This improves
reusability.

• Avoid static global variables. For the vast majority of purposes, you will never need static

global variables. Instead, use either fields or constants.

Bad: public static String bad;

• Always declare fields above the first constructor. Initialize them in the constructor, not

outside it.

Good:
public class Counter {
 private String name;
 private int count;
 public Counter(String givenName) {
 name = givenName;
 count = 1;
 }
}

Bad:
public class Counter {
 private String name = "bob";
 private int count = 1;
 public Counter(String givenName) {
 name = givenName;
 }
}

• Localize variables as much as possible. This means that if something is only needed in one

method, it should be a variable in that method and not a field. Only data that is part of your
object’s state and are needed in several methods should be stored in fields. If a variable is
only needed inside a loop, declare it inside the loop and not before.

Good:
public int addTwos(int times) {
 int sum = 0;
 for (int i = 0; i < times; i++) {
 int temp = 2 * times;
 sum += temp;

 }
 return sum;
}

Bad:
public int addTwos(int times) {
 int sum = 0;
 int temp;
 for (int i = 0; i < times; i++) {
 temp = 2 * times;
 sum += temp;
 }
 return sum;
}

Redundancy

Redundancy is the most subtle style issue, so here are a few guidelines for avoiding it. However,
use your best judgment and common sense as a reliable guide.

• If you find yourself doing the same thing multiple times, make a method out of it and call it

whenever you need it. Use parameters to generalize the code.

Bad:
public void printAll() {
 System.out.println("x = 500, y = 100");
 System.out.println("x = 400, y = 200");
 System.out.println("x = 300, y = 300");
 System.out.println("x = 200, y = 400");
 System.out.println("x = 100, y = 500");
}

Good: use a helper method with one parameter to capture the redundancy of the printed
format "x = something, y = something"
public void printAll() {
 printLine(500);
 printLine(400);
 printLine(300);
 printLine(200);
 printLine(100);
}

public void printLine(int x) {
 int y = 600 – x;
 System.out.println("x = " + x + ", y = " + y);
}

• Even better, if you find a pattern, use a loop to reduce the number of manual method calls or

operations you do.

Great:
public void printAll() {
 for (int i = 500; i > 0; i -= 100) {
 printLine(i);
 }
}

public void printLine(int x) {
 int y = 600 – x;
 System.out.println("x = " + x + ", y = " + y);
}

• Don’t over-use methods. A one-line method that is called only once is probably not useful.

Make new methods only where it makes sense to divide your code for reuse or readability.

• Avoid redundancy in constructors: use the this notation to have one constructor call

another. Probably only one constructor should be doing major work.

Bad:
public class Counter {
 private String name;
 private int count;

 public Counter(String givenName) {
 name = givenName;
 count = 0;
 }

 public Counter(int currentCount) {
 count = currentCount;
 givenName = null;
 }

 public Counter(String givenName, int currentCount) {
 name = givenName;
 count = currentCount;
 }
}

Good:
public class Counter {
 private String name;
 private int count;

 public Counter(String givenName) {
 this(givenName, 0);
 }

 public Counter(int currentCount) {
 this(null, currentCount);
 }

 public Counter(String givenName, int currentCount) {
 name = givenName;
 count = currentCount;
 }
}

Other

• Remove any debugging code from your program before you turn it in.

• Make helper methods private. The client does not need to see them.

• In general, avoid break or continue statements in loops unless absolutely necessary. If

you don’t know what those are, then don’t worry about it.

• The homework specifications are the ultimate guide on what we expect, so refer to them for

any special requirements.

