
Building Java Programs

read: 12.5
Recursive backtracking

2

Exhaustive Search
�  Iterate through all elements of a search space

�  Useful to solve problems that require making decisions
�  Each decision leads to new choices
�  Insufficient information to make a thoughtful choice

�  Depth first search: we go deep down one path rather than

broad

�  Natural to implement recursively: call stack keeps track of
decision points in right order (opposite from visited)

3

Exercise: Permutations
�  Write a method permute that accepts a string as a

parameter and outputs all possible rearrangements of the
letters in that string. The arrangements may be output in
any order.

�  Example:
permute("TEAM")
outputs the following
sequence of lines:

TEAM
TEMA
TAEM
TAME
TMEA
TMAE
ETAM
ETMA
EATM
EAMT
EMTA
EMAT

ATEM
ATME
AETM
AEMT
AMTE
AMET
MTEA
MTAE
META
MEAT
MATE
MAET

4

Examining the problem
�  We want to generate all possible sequences of letters.

 for (each possible first letter):
 for (each possible second letter):

 for (each possible third letter):
 ...
 print!

�  Each permutation is a set of choices or decisions:
�  Which character do I want to place first?
�  Which character do I want to place second?
�  ...

�  solution space: set of all possible sets of decisions to explore

5

Decision tree
chosen available

T E A M

T E A M

T E A M

T E A M

T E A M

T A E M T M E A

E T A M

T E M A

T E M A

T M E A

...

T A E M

T A E M

T A M E

T A M E T M E A

T M A E

T M A E

6

Exercise solution
// Outputs all permutations of the given string.
public static void permute(String s) {
 permute(s, "");
}

private static void permute(String s, String chosen) {
 if (s.length() == 0) {
 // base case: no choices left to be made
 System.out.println(chosen);
 } else {
 // recursive case: choose each possible next letter
 for (int i = 0; i < s.length(); i++) {
 char c = s.charAt(i); // choose
 s = s.substring(0, i) + s.substring(i + 1);
 chosen += c;

 permute(s, chosen); // explore

 s = s.substring(0, i) + c + s.substring(i);
 chosen = chosen.substring(0, chosen.length() - 1);
 } // un-choose
 }
}

7

Exercise solution 2
// Outputs all permutations of the given string.
public static void permute(String s) {
 permute(s, "");
}

private static void permute(String s, String chosen) {
 if (s.length() == 0) {
 // base case: no choices left to be made
 System.out.println(chosen);
 } else {
 // recursive case: choose each possible next letter
 for (int i = 0; i < s.length(); i++) {
 String ch = s.substring(i, i + 1); // choose

 String rest = s.substring(0, i) + // remove
 s.substring(i + 1);

 permute(rest, chosen + ch); // explore
 }
 } // (don't need to "un-choose" because
} // we used temp variables)

8

Backtracking
�  Useful to solve problems that require making decisions

�  Each decision leads to new choices
�  Some (but not all!) sequence(s) of choices will be a solution
�  Insufficient information to make a thoughtful choice

�  Systematically prune out infeasible solutions

9

Backtracking strategies
�  When solving a backtracking problem, ask these questions:

�  What are the "choices" in this problem?
�  What is the "base case"? (How do I know when I'm out of

choices?)

�  How do I "make" a choice?
�  Do I need to create additional variables to remember my choices?
�  Do I need to modify the values of existing variables?

�  How do I explore the rest of the choices?
�  Do I need to remove the made choice from the list of choices?

�  Once I'm done exploring, what should I do?

�  How do I "un-make" a choice?

10

Maze class
�  Suppose we have a Maze class with these methods:

Method/Constructor Description
public Maze(String text) construct a given maze
public int getHeight(), getWidth() get maze dimensions
public boolean isExplored(int r, int c)
public void setExplored(int r, int c)

get/set whether you
have visited a location

public void isWall(int r, int c) whether given location
is blocked by a wall

public void mark(int r, int c)
public void isMarked(int r, int c)

whether given location
is marked in a path

public String toString() text display of maze

11

Exercise: solve maze
�  Write a method solveMaze that accepts a Maze and a

starting row/column as parameters and tries to find a path
out of the maze starting from that position.

�  If you find a solution:
�  Your code should stop exploring.
�  You should mark the path out of the

maze on your way back out of the
recursion, using backtracking.

�  (As you explore the maze, squares you set
as 'explored' will be printed with a dot,
and squares you 'mark' will display an X.)

12

Decision tree
position (row 1, col 7)

choices ←↑↓→ (these never change)

(1, 6) (0, 7)

wall

(2, 7)

wall

(1, 8)

→ ↓ ↑ ←

(1, 5) (0, 6)

wall

(2, 6)

wall

(1, 7)

visited

(1, 7)

visited

(0, 8)

wall

(2, 8) (1, 9)

wall

...
(1, 4) (0, 5)

wall

(2, 5) (1, 6)

visited

... ...

13

Recall: Backtracking
A general pseudo-code algorithm for backtracking problems:

Explore(choices):
�  if there are no more choices to make: stop.

�  else, for each available choice C:
�  Choose C.
�  Explore the remaining choices.
�  Un-choose C, if necessary. (backtrack!)

What are the choices in this problem?

