Building Java Programs

Chapter 13
Lecture 13-1: binary search and complexity

reading: 13.1-13.2

I know, the
exception

hierarchy is
awful.

I heard Java is an
exceptional language.

That's not the object
of what I was saying.

Oh, don't be

so primitive.

http://www.alexsweet.co.uk/comics.php?comic=2

e

* You cannot test every possible input, parameter value, etc.
Think of a limited set of tests likely to expose bugs.

» Think about boundary cases
Positive; zero; negative numbers
Right at the edge of an array or collection's size

» Think about empty cases and error cases
0, -1, null; an empty list or array

e test behavior in combination
Maybe add usually works, but fails after you call remove
Make multiple calls; maybe size fails the second time only

Searching methods

* Implement the following methods:
indexOf — returns first index of element, or -1 if not found
contains - returns true if the list contains the given int value

e Why do we need isEmpty and contains when we already
have indexOf and size ?

Adds convenience to the client of our class:

// less elegant // more elegant
D Y T e e R e e if (myList.isEmpty()) {
SV S Y B D s D S e e e if (myList.contains (42))

{

Sequential search

*» sequential search: Locates a target value in an array /
list by examining each element from start to finish. Used in
FLlleae R

How many elements will it need to examine?

Example: Searching the array below for the value 42:

4127 10|15(20(22|25|30({36|42|50|56|68|85|92|103

The array is sorted. Could we take advantage of this?

Binary search (13.1)

* binary search: Locates a target value in a sorted array or
list by successively eliminating half of the array from
consideration.

How many elements will it need to examine?

Example: Searching the array below for the value 42:

4127 10|15(20(22|25|30({36|42|50|56|68|85|92|103

min mid max

Arrays.blnarySearch

// searches an entire sorted array for a given value
// returns its index if found; a negative number if not found
// Precondition: array is sorted

Arrays.binarySearch (array, value)

// searches given portion of a sorted array for a given value

// examines minIndex (inclusive) through maxIndex (exclusive)

// returns its index if found; a negative number if not found
// Precondition: array is sorted

Arrays.binarySearch (array, minIndex, maxIndex, value)

* The binarySearch method in the Arrays class searches an
array very efficiently if the array is sorted.

* You can search the entire array, or just a range of indexes
(useful for "unfilled" arrays such as the one in ArrayIntList)

Using binarySearch

// index 0 e M 4 5 6 7 8 L oA 0 et iy e i i i
-4 7

int[] a = { v oGl R G e o G B B L B B s B B BV G e
int index = Arrays.binarySearch(a, 0, 16, 42); // indexl is 10
int index2 = Arrays.binarySearch(a, 0, 16, 21); // index2 is -7

* binarySearch returns the index where the value is found

e if the value is not found, binarySearch returns:

i A neve e el Sle M e pea o

where insertionPoint is the index where the element would
have been, if it had been in the array in sorted order.

To insert the value into the array, negate insertionPoint + 1

int indexToInsert2l = -(index2 + 1); // 6

'Runtime Efficiency (13.2)

* How much better is binary search than sequential search?

> —

o efficiency: measure of computing resources used by code.
can be relative to speed (time), memory (space), etc.
most commonly refers to run time

* Assume the following:

Any single Java statement takes same amount of time to run.

A method call's runtime is measured by the total of the
statements inside the method's body.

A loop's runtime, if the loop repeats N times, is N times the
runtime of the statements in its body.

e

Efficiency examples
statementl;\ \\

statement2; - 3
statement3 ;]

For inE s e e e ey
statement4; N

}

>4N+3

IR{ee L e s R e N .
statement5;
statement6;
statement?; >~ 3N
}
02

=

Efficiency examples 2

for a1 N .
= o N2

statementl;

}

oI s s e e N e) >N2+4N
statement2;
statement3;
statement4; =
statement5;

} 0

* How many statements will execute if N = 10? ¥f N = 10007

11

————

~ Algorithm growth rates (13.2)

* We measure runtime in proportion to the input data size, N.

growth rate: Change in runtime as N changes.

* Say an algorithm runs 0.4N3 4+ 25N2 + 8N + 17
statements.

Consider the runtime when N is extremely large .

We ignore constants like 25 because they are tiny next to N.
The highest-order term (N3) dominates the overall runtime.

We say that this algorithm runs "on the order of" N3.
or O(N3) for short ("Big-Oh of N cubed")

12

e ———

Complexity classes

» complexity class: A category of algorithm efficiency
based on the algorithm's relationship to the input size N.

Class Big-Oh If you double N, ... Example
constant O(1) unchanged 10ms
logarithmic | O(log, N) | increases slightly 175ms
linear O(N) doubles 3.2 sec
log-linear O(N log, N) | slightly more than doubles | 6 sec
quadratic O(N?) quadruples 1 min 42 sec
cubic O(N3) multiplies by 8 55 min
exponential | O(2N) multiplies drastically 5 * 1081 years

13

Complexity classes

1000

Big-O Complexity

8

8

Operations
8

8

8

10

70

100

—0f1)
e O logn)
e O(n)
s===0(nlogn)
—o(nhn
=——=0{2%n)
===0fnl)

http://recursive-design.com/blog/2010/12/07/comp-sci-101-big-o-notation/ - post about a Google interview

14

Sequential search

* What is its complexity class?

pubiir e n e ndeseB N En e ey

{

Forfint i enaidise ad s e ey)
1f (elementDatal[i] == wvalue) {
} Feturnyasy >> N
}
return —1 o e -
}
41217 110(15(20(22(25|30|36(42|50(56|68(85|92|103

* On average, "only" N/2 elements are visited
1/2 is a constant that can be ignored

Collection efficiency

o Efficiency of our ArrayIntList or Java's ArrayList:

Method ArraylList
add O(1)
add (index, value) [O(N)
indexOf O(N)
get O(1)
remove O(N)
set O(1)
size O(1)

Binary search

binary search successively eliminates half of the

elements.

Algorithm: Examine the middle element of the array.

- If it is too big, eliminate the right half of the array and repeat.

« If it is too small, eliminate the left half of the array and repeat.

- Else it is the value we're searching for, so stop.

Which indexes does the algorithm examine to find value 427

What is the runtime complexity class of binary search?

10

15

20

22

25

30

36

42

50

56

68

85

92

103

min

mid

Max

17

————

Binary search runtime

e For an array of size N, it eliminates 2 until 1 element
remains.
N, N/2, N/4, N/S, ..., 4, 2, 1

How many divisions does it take?

* Think of it from the other direction:
How many times do I have to multiply by 2 to reach N?

1,2,4,8, ..., N/4, N/2, N
Call this number of multiplications "x".

2%= N
x =log, N

e Binary search is in the logarithmic complexity class.

18

————

Max subsequence sum

e Write a method maxSum to find the largest sum of any contiguous
subsequence in an array of integers.

Easy for all positives: include the whole array.
What if there are negatives?

211|-4]10{15}-2(22(-8|5

Largest sum: 10 + 15 + -2 + 22 = 45

(Let's define the max to be 0 if the array is entirely negative.)
» Ideas for algorithms?

19

Algorithm 1 pseudocode

maxsSum (a) :
max = 0.
for each starting index 1i:
for each ending index j:

sum = add the elements from af[i] to al[]].

1f sum > max,
max = sum.

return max.

20

Algorithm 1 code

* What complexity class is this algorithm?
O(N3). Takes a few seconds to process 2000 elements.

o e P e A A o 17— s 1 A A S e MR
int max = 0;
R W R M e e e L i I Yt o o S e e
i on i il elie i ovianaiengih el

Al

// sum = add the elements from a[i] to a[j].
0

RS S
Y M AR AR &
sum +=

I T B e e
alk];

}

if (sum > max) {

max = sum;
}
}

}

R S R A VN A Vo

21

e

* Observation: We are redundantly re-computing sums.

For example, we compute the sum between indexes 2 and 5:
a[2] + a[3] + a[4] + a[5]

Next we compute the sum between indexes 2 and 6:
a[2] + a[3] + a[4] + a[5] + a[6]

We already had computed the sum of 2-5, but we compute it again as
part of the 2-6 computation.

Let's write an improved version that avoids this flaw.

22

Algorithm 2 code

* What complexity class is this algorithm?
O(N2). Can process tens of thousands of elements per second.

o e e Y T AT B 1 7= b ey DA s o A TR
int max = 0;
R W R M e e e L i I Yt o o S e e

int sum = 0;
e R e e e e g P P T
sum += a[]j];
AR P B YR S A P e
max = sum;
}
}
}

35 2 0 0 B) A 7 o <

A clever solution

e Claim 1 : A max range cannot start with a negative-sum range.
i Y k
<0 sum(j+1, k)
sum(i, k) < sum(j+1, k)

e Claim 2 : If sum(i, j-1) = 0 and sum(i, j) < 0, any max range that
ends at j+1 or higher cannot start at any of i through j.

i e k
>0 <0 sum(j+1, k)
<0 sum(j+1, k)
sum(?, k) < sum(j+1, k)

Together, these observations lead to a very clever algorithm...

/Algorithm 3 code

* What complexity class is this algorithm?
» O(N). Handles many millions of elements per second!

o e e A A o 17— vy 111 20 B e

int max = 0;

MY EE Y e TV U

int i = 0;

VB R i Y S A S M Y WO Y o o R M i

34 teum e Oy ! // if sum becomes negative, max range

i=3; // cannot start with any of i - j-1
sum = 0; // (Claim 2)

}
sum += al[jl;
T e S
max = sum;
}
}

R S R A VN A Vo

25

