
Building Java Programs

Chapter 13
Lecture 13-1: binary search and complexity

reading: 13.1-13.2

2 http://www.alexsweet.co.uk/comics.php?comic=2

3

Tips for testing
�  You cannot test every possible input, parameter value, etc.

�  Think of a limited set of tests likely to expose bugs.

�  Think about boundary cases
�  Positive; zero; negative numbers
�  Right at the edge of an array or collection's size

�  Think about empty cases and error cases
�  0, -1, null; an empty list or array

�  test behavior in combination
�  Maybe add usually works, but fails after you call remove
�  Make multiple calls; maybe size fails the second time only

4

Searching methods
�  Implement the following methods:

�  indexOf – returns first index of element, or -1 if not found
�  contains - returns true if the list contains the given int value

�  Why do we need isEmpty and contains when we already
have indexOf and size ?
�  Adds convenience to the client of our class:

// less elegant // more elegant
if (myList.size() == 0) { if (myList.isEmpty()) {

if (myList.indexOf(42) >= 0) { if (myList.contains(42)) {

5

Sequential search

�  sequential search: Locates a target value in an array /
list by examining each element from start to finish. Used in
indexOf.

�  How many elements will it need to examine?

�  Example: Searching the array below for the value 42:

�  The array is sorted. Could we take advantage of this?

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

i

6

Binary search (13.1)

�  binary search: Locates a target value in a sorted array or
list by successively eliminating half of the array from
consideration.

�  How many elements will it need to examine?

�  Example: Searching the array below for the value 42:

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

min mid max

7

Arrays.binarySearch
// searches an entire sorted array for a given value
// returns its index if found; a negative number if not found
// Precondition: array is sorted
Arrays.binarySearch(array, value)

// searches given portion of a sorted array for a given value
// examines minIndex (inclusive) through maxIndex (exclusive)
// returns its index if found; a negative number if not found
// Precondition: array is sorted
Arrays.binarySearch(array, minIndex, maxIndex, value)

�  The binarySearch method in the Arrays class searches an
array very efficiently if the array is sorted.
�  You can search the entire array, or just a range of indexes

(useful for "unfilled" arrays such as the one in ArrayIntList)

8

Using binarySearch
// index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
int[] a = {-4, 2, 7, 9, 15, 19, 25, 28, 30, 36, 42, 50, 56, 68, 85, 92};

int index = Arrays.binarySearch(a, 0, 16, 42); // index1 is 10

int index2 = Arrays.binarySearch(a, 0, 16, 21); // index2 is -7

�  binarySearch returns the index where the value is found

�  if the value is not found, binarySearch returns:
 -(insertionPoint + 1)

•  where insertionPoint is the index where the element would
have been, if it had been in the array in sorted order.

•  To insert the value into the array, negate insertionPoint + 1

 int indexToInsert21 = -(index2 + 1); // 6

9

Runtime Efficiency (13.2)
�  How much better is binary search than sequential search?

�  efficiency: measure of computing resources used by code.
�  can be relative to speed (time), memory (space), etc.
�  most commonly refers to run time

�  Assume the following:
�  Any single Java statement takes same amount of time to run.
�  A method call's runtime is measured by the total of the

statements inside the method's body.
�  A loop's runtime, if the loop repeats N times, is N times the

runtime of the statements in its body.

10

Efficiency examples
statement1;
statement2;
statement3;

for (int i = 1; i <= N; i++) {
 statement4;
}

for (int i = 1; i <= N; i++) {
 statement5;
 statement6;
 statement7;
}

3

N

3N

4N + 3

11

Efficiency examples 2
for (int i = 1; i <= N; i++) {
 for (int j = 1; j <= N; j++) {
 statement1;
 }
}

for (int i = 1; i <= N; i++) {
 statement2;
 statement3;
 statement4;
 statement5;
}

�  How many statements will execute if N = 10? If N = 1000?

N2 + 4N

N2

4N

12

Algorithm growth rates (13.2)
�  We measure runtime in proportion to the input data size, N.

�  growth rate: Change in runtime as N changes.

�  Say an algorithm runs 0.4N3 + 25N2 + 8N + 17
statements.
�  Consider the runtime when N is extremely large .

�  We ignore constants like 25 because they are tiny next to N.
�  The highest-order term (N3) dominates the overall runtime.

�  We say that this algorithm runs "on the order of" N3.
�  or O(N3) for short ("Big-Oh of N cubed")

13

Complexity classes
�  complexity class: A category of algorithm efficiency

based on the algorithm's relationship to the input size N.

Class Big-Oh If you double N, ... Example
constant O(1) unchanged 10ms
logarithmic O(log2 N) increases slightly 175ms
linear O(N) doubles 3.2 sec
log-linear O(N log2 N) slightly more than doubles 6 sec
quadratic O(N2) quadruples 1 min 42 sec
cubic O(N3) multiplies by 8 55 min
...
exponential O(2N) multiplies drastically 5 * 1061 years

14

Complexity classes

http://recursive-design.com/blog/2010/12/07/comp-sci-101-big-o-notation/ - post about a Google interview

15

Sequential search
�  What is its complexity class?

public int indexOf(int value) {
 for (int i = 0; i < size; i++) {
 if (elementData[i] == value) {
 return i;
 }
 }
 return -1; // not found
}

�  On average, "only" N/2 elements are visited
�  1/2 is a constant that can be ignored

N

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

16

Collection efficiency

Method ArrayList
add

add(index, value)
indexOf
get
remove
set
size

�  Efficiency of our ArrayIntList or Java's ArrayList:

Method ArrayList
add O(1)
add(index, value) O(N)
indexOf O(N)
get O(1)
remove O(N)
set O(1)
size O(1)

17

Binary search
�  binary search successively eliminates half of the

elements.

�  Algorithm: Examine the middle element of the array.
�  If it is too big, eliminate the right half of the array and repeat.
�  If it is too small, eliminate the left half of the array and repeat.
�  Else it is the value we're searching for, so stop.

�  Which indexes does the algorithm examine to find value 42?
�  What is the runtime complexity class of binary search?

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

min mid max

18

Binary search runtime
�  For an array of size N, it eliminates ½ until 1 element

remains.
 N, N/2, N/4, N/8, ..., 4, 2, 1

�  How many divisions does it take?

�  Think of it from the other direction:
�  How many times do I have to multiply by 2 to reach N?
 1, 2, 4, 8, ..., N/4, N/2, N

�  Call this number of multiplications "x".

 2x = N
 x = log2 N

�  Binary search is in the logarithmic complexity class.

19

Max subsequence sum
�  Write a method maxSum to find the largest sum of any contiguous

subsequence in an array of integers.
�  Easy for all positives: include the whole array.
�  What if there are negatives?

�  (Let's define the max to be 0 if the array is entirely negative.)

�  Ideas for algorithms?

index 0 1 2 3 4 5 6 7 8
value 2 1 -4 10 15 -2 22 -8 5

Largest sum: 10 + 15 + -2 + 22 = 45

index 0 1 2 3 4 5 6 7 8
value 2 1 -4 10 15 -2 22 -8 5

20

Algorithm 1 pseudocode
maxSum(a):
 max = 0.
 for each starting index i:
 for each ending index j:
 sum = add the elements from a[i] to a[j].
 if sum > max,
 max = sum.

 return max.

index 0 1 2 3 4 5 6 7 8
value 2 1 -4 10 15 -2 22 -8 5

21

Algorithm 1 code
�  What complexity class is this algorithm?

�  O(N3). Takes a few seconds to process 2000 elements.

public static int maxSum1(int[] a) {
 int max = 0;
 for (int i = 0; i < a.length; i++) {
 for (int j = i; j < a.length; j++) {
 // sum = add the elements from a[i] to a[j].
 int sum = 0;
 for (int k = i; k <= j; k++) {
 sum += a[k];
 }
 if (sum > max) {
 max = sum;
 }
 }
 }
 return max;
}

22

Flaws in algorithm 1
�  Observation: We are redundantly re-computing sums.

�  For example, we compute the sum between indexes 2 and 5:
a[2] + a[3] + a[4] + a[5]

�  Next we compute the sum between indexes 2 and 6:
a[2] + a[3] + a[4] + a[5] + a[6]

�  We already had computed the sum of 2-5, but we compute it again as
part of the 2-6 computation.

�  Let's write an improved version that avoids this flaw.

index 0 1 2 3 4 5 6 7 8
value 2 1 -4 10 15 -2 22 -8 5

23

Algorithm 2 code
�  What complexity class is this algorithm?

�  O(N2). Can process tens of thousands of elements per second.

public static int maxSum2(int[] a) {
 int max = 0;
 for (int i = 0; i < a.length; i++) {
 int sum = 0;
 for (int j = i; j < a.length; j++) {
 sum += a[j];
 if (sum > max) {
 max = sum;
 }
 }
 }
 return max;
}

index 0 1 2 3 4 5 6 7 8
value 2 1 -4 10 15 -2 22 -8 5

24

A clever solution
�  Claim 1 : A max range cannot start with a negative-sum range.

�  Claim 2 : If sum(i, j-1) ≥ 0 and sum(i, j) < 0, any max range that
ends at j+1 or higher cannot start at any of i through j.

�  Together, these observations lead to a very clever algorithm...

i ... j j+1 ... k

< 0 sum(j+1, k)

sum(i, k) < sum(j+1, k)

i ... j-1 j j+1 ... k

≥ 0 < 0 sum(j+1, k)

< 0 sum(j+1, k)

sum(?, k) < sum(j+1, k)

25

Algorithm 3 code
�  What complexity class is this algorithm?

�  O(N). Handles many millions of elements per second!

public static int maxSum3(int[] a) {
 int max = 0;
 int sum = 0;
 int i = 0;
 for (int j = 0; j < a.length; j++) {
 if (sum < 0) { // if sum becomes negative, max range
 i = j; // cannot start with any of i - j-1
 sum = 0; // (Claim 2)
 }
 sum += a[j];
 if (sum > max) {
 max = sum;
 }
 }
 return max;
}

