// Simple binary tree class that includes methods to construct a tree of ints, // to print the structure, and to print the data using a preorder, inorder or // postorder traversal. The trees built have nodes numbered starting with 1 // and numbered sequentially level by level with no gaps in the tree. The // documentation refers to these as "sequential trees." public class IntTree { private IntTreeNode overallRoot; // post: constructs an empty tree public IntTree() { overallRoot = null; } // post: value is added to overall tree so as to preserve the // binary search tree property public void add(int value) { overallRoot = add(overallRoot, value); } // post: value is added to given tree so as to preserve the // binary search tree property private IntTreeNode add(IntTreeNode root, int value) { if (root == null) { root = new IntTreeNode(value); } else if (value <= root.data) { root.left = add(root.left, value); } else { root.right = add(root.right, value); } return root; } // post: returns true if overall tree contains value public boolean contains(int value) { return contains(overallRoot, value); } // post: returns true if given tree contains value private boolean contains(IntTreeNode root, int value) { if (root == null) { return false; } else if (root.data == value) { return true; } else if (value < root.data) { return contains(root.left, value); } else { return contains(root.right, value); } } // pre : max >= 0 (throws IllegalArgumentException if not) // post: constructs a sequential tree with given number of nodes public IntTree(int max) { if (max < 0) { throw new IllegalArgumentException("max: " + max); } overallRoot = buildTree(1, max); } // post: returns a sequential tree with n as its root unless n is greater // than max, in which case it returns an empty tree private IntTreeNode buildTree(int n, int max) { if (n > max) { return null; } else { IntTreeNode left = buildTree(2 * n, max); IntTreeNode right = buildTree(2 * n + 1, max); return new IntTreeNode(n, left, right); } } // post: prints the tree contents using a preorder traversal public void printPreorder() { System.out.print("preorder:"); printPreorder(overallRoot); System.out.println(); } // post: prints in preorder the tree with given root private void printPreorder(IntTreeNode root) { if (root != null) { System.out.print(" " + root.data); printPreorder(root.left); printPreorder(root.right); } } // post: prints the tree contents using an inorder traversal public void printInorder() { System.out.print("inorder:"); printInorder(overallRoot); System.out.println(); } // post: prints in inorder the tree with given root private void printInorder(IntTreeNode root) { if (root != null) { printInorder(root.left); System.out.print(" " + root.data); printInorder(root.right); } } // post: prints the tree contents using a postorder traversal public void printPostorder() { System.out.print("postorder:"); printPostorder(overallRoot); System.out.println(); } // post: prints in postorder the tree with given root private void printPostorder(IntTreeNode root) { if (root != null) { printPostorder(root.left); printPostorder(root.right); System.out.print(" " + root.data); } } // post: prints the tree contents, one per line, following an inorder // traversal and using indentation to indicate node depth; prints // right to left so that it looks correct when the output is rotated. public void printSideways() { printSideways(overallRoot, 0); } // post: prints in reversed preorder the tree with given root, indenting // each line to the given level private void printSideways(IntTreeNode root, int level) { if (root != null) { printSideways(root.right, level + 1); for (int i = 0; i < level; i++) { System.out.print(" "); } System.out.println(root.data); printSideways(root.left, level + 1); } } }