Lecture 18: Binary Search Trees
e There is a subtype of binary trees called BINARY SEARCH TREES
o A binary search tree is organized so that each subtree has the following format:

fomm +
/ \
/ \
/ \

fom - + fom +

| values <= data | | values > data |

pom - + pom e +
o This is the binary search tree property, and it holds for EVERY subtree, not just the overall

root

o What about duplicates?
m 1) Don’t allow it
m 2) Put them on the left
m 3) Put them on the right
m What matters is consistency

e Example: Inserting into a binary search tree
o Order: Harry, Ron, Dumbledore, Snape, Hermione, Ginny

o Tree:
Harry
/ \
/ \
Dumbledore Ron
\ / \
\ / \
Ginny Hermione Snape

O

Now perform an inorder traversal -->
m Dumbledore, Ginny, Harry, Hermione, Ron, Snape

Alphabetical!

Actually not that surprising given the way we built the tree
(values <= data) root data (values > data)
\————=- lst-——--- / \--2nd--/ \————- 3rd----- /

o We repeated this pattern at every subtree, so it always prints alphabetically earlier names
first

e How to implement this adding behavior

o (show the client code) - modify the IntTree class
o First, we need to start with an empty tree - add a constructor
public IntTree () {

o

o

overallRoot = null;

o Then, we need to write add(value), which will do exactly what we did before - preserving the
binary search tree property
o We'll follow the usual structure of a public/private pair, with the private method taking the
root of the current subtree that we are looking at
public void add(int wvalue) {
add (overallRoot, wvalue);

private void add(IntTreeNode root, int value) {

}

So our private helper will be recursive - it always is with trees.
What is our base case? When do we know when to stop traversing and just ADD the
node?

m When there is no node!

m For example, when initially the root is null and we want to add the node there, or

when we traverse down and get to an empty spot.
m Replace the null reference with a new node
private void add(IntTreeNode root, int value) {
if (root == null) {
root = new IntTreeNode (value);

}
o And what if the root is not an empty tree?
What did we do when we were adding?
We compared the value we were given to the data in the root
If it was less than the root’s data, we went left
If it was greater than the root’s data, we went right
private void add (IntTreeNode root, int value) {
if (root == null) {
root = new IntTreeNode (value);
} else if (value <= root.data) {
// add to left
} else {
// add to right

}
m So what do we do in the tests? You might want to say
if (root.left == null) {
root.left = new IntTreeNode (value);
}
m But this is redundant, and not recursive zen

m “if only we had a method...”
private void add(IntTreeNode root, int wvalue) {

if (root == null) {
root = new IntTreeNode (value);

} else if (value <= root.data) {
add (root.left, wvalue);

} else {
add (root.right, wvalue);

}
o (run the code with some numbers)

o Unfortunately, this doesn’t work
m The reason has to do with the parameter “root”
m “root” stores a copy of whatever is passed into it
m As aresult, changing what root points to doesn’t change what was passed in
Look at PointTest
o Does the translation reflected in the original object? YES - we are changing the object itself
o Does changing p change anything in main? NO - we are changing a reference, which was

copied

fmm +
+———+ | t-———+ t————+ |
x| A=t--> 1 x| 21 y I 8| |
+———1 | t-———+ t————t |
fom e +

A

t———1 |

| ——+———-"—-"—---- +

+———1

o Oiriginally p and q are the same phone number - calling the same person
o But when we update p, it doesn’t affect x

Fmm - +
+-——+ | t-———+ t-———t |
x | +=+--> | x| 5| vy | 13 | |
+-——+ | +-———+t t-———t |
o +
o +
+-——+ | +o———+ +-———+ |
p ol +=+==> | x | =7 | y [-14 | |
+-——+ | t-———+ t-———t |

o

To solve this, we use what we call the “x = change(x)” idiom

(change Point example so that the change() method returns a Point)

The idea is that the method may change the object entirely (creating a new object), so we
want to update x in case that happens

(run PointTest again)

How can we apply this to the add() example?

o

We return the root, and change the return type
private IntTreeNode add(IntTreeNode root, int wvalue) {

return root;
}
And we change our calls on the method so that we follow the x=change(x) pattern
public void add(int wvalue) {
overallRoot = add(overallRoot, wvalue);
}
This says that we might get the old value (effectively x=x) or a new value back, but if we get
a new value, we want to update the overall root to point to it
Analogy: your computer breaks, and you send it to the manufacturer to get it fixed. You
don’t care if you get the old computer back fixed, or a brand new computer - you just care
that you got a computer back
We also need to change all other calls on the recursive method
private IntTreeNode add(IntTreeNode root, int wvalue) {
if (root == null) {
root = new IntTreeNode (value);
} else if (value <= root.data) {
root.left = add(root.left, wvalue);
} else {
root.right = add(root.right, wvalue);
}
return root;

}
Notice it's not root = add(root.left, value) - the same thing you pass in is what you assign to

- the same “x” on both sides
You'll get practice with this in section next week, and on your homework. It's a valuable tool
when it's used properly

Use when you want to MODIFY an EXISTING tree

e Another useful method for a binary search tree:
// post: returns true if overall tree contains value
public boolean contains (int value) {
return contains (overallRoot, wvalue);
}
// post: returns true if given tree contains value
private boolean contains (IntTreeNode root, int value) {

if (root == null) {
return false;
} else if (value == root.data) {

return true;
} else if (value < root.data) {
return contains (root.left, wvalue);
} else {
// value > root.data
return contains (root.right, wvalue);

}
e Assignment 6: 20Questions
o Simulate how nodes are added
o Show the intermediate questions.txt files
o Run with bigquestions.txt

