Lecture 15: Recursive backtracking, 8 Queens
e The 8-queens problem
o Challenge: put 8 queens on an 8x8 chessboard such that no 2 are threatening each other
o Remember, queens can move vertically, horizontally, diagonally
o So what are our choices?
m Placing a queen on a space
So where can you place the first queen? In any of the 64 spots?
Then 63 spots for the second queen, 62 for the third queen...
1.8x10714 possibilities - we can do better
Instead, we can place a queen in the first column - if there is a solution, it has 1
queen in each column
o Again, we could use nested loops from 1-8 to do this, but we’ll do it more elegantly with
recursive backtracking
e The backtracking will be simpler if we abstract-away some of the supporting code: the Board
o We'll be placing queens on a board, so we can create a board class to store that
information
o What methods might you want to have from a board?
m place
m remove
m safe
m print
m Size
o Assume you have such a board
e We have some starter code that prompts a user for a value of n and constructs a board
o So how is the recursion going to work? All solutions or just one solution?
m Just one solution in this case
m That means we should stop exploring when we find a solution
m Our recursive helper should be able to let us know if it found a solution or not -
boolean return type
o We'll obviously need a helper method - common case
m What parameters does it need?
m The Board
m Anything else? We can figure that out later
o Every level of the decision tree will be handled by a different recursive call
m One method call will handle col 1, one will handle col 2, etc.
m So what will the method need to know besides the board? The column!
m Add column as a parameter to the private helper
o We also don’t want to waste time exploring dead ends
m What kinds of dead ends might we have?
m For example, if we don’t place 1,2,3 safely, then does it make sense to try to place a
queen in column 47?
m so we add a precondition:
// pre: queens have been safely placed in previous columns

e Now we’re ready to write our code
o What’s our base case? What column could we get to that would be really easy to know if
we found a solution?
m Column 9, because that means columns 1-8 have been placed correctly
o What do we do if we get to column 97?
m Return true! We've found an answer
m Also, don’t hard-code 8 - use the size of the board
o Let’s say we've safely placed queens 1-4, and are now placing queen 5
m What options do we have to explore at this level? Each row!
We have multiple possibilities, so how can we explore each possibility
Use a for-loop to try each row
(notice: using iteration INSIDE of recursion)
Then choose, explore, unchoose

e Solution
public static void solve(Board solution) {
if (!explore(solution, 1)) {
System.out.println ("No solution.");
} else {
System.out.println ("One solution is as follows:");
solution.print ()

}

public static boolean explore(Board b, int col) {

if (col > b.size()) {
return true;
} else {
for (int row = 1; row <= b.size(); row++) {
if (b.safe(row, col)) {

b.place(row, col);
if (explore(b, col + 1)) {
return true;

}

b.remove (row, col);

}

return false;

}
e Execute a trace for 4-queens

e The next programming assignment: using recursive backtracking to find anagrams
o As an example, construct a short dictionary: bee, go, gush, shrug
o Run the program with this dictionary and “george bush”
o In recursive backtracking, we have a set of possibilities, and then we make a series of
choices from those possibilities
m In 8-queens, we could choose what row to put a queen, and we made a choice for
each column
m What are our possibilities, and set of choices, in this case?
m Possibilities = words in the dictionary
m Choices = each word in the anagram
o How do we make progress towards being “done”?
m In 8-queens, we moved forward column-by-column
m Here we move forward word-by-word
o How do we know when we’re done?
m In 8-queens, when we’ve placed all the columns
m Here, when we've used up all our letters
m So as we place words, we're also using up letters
e Keeping track of letters - what does that remind you of?
o Letterlnventory!
o ‘“choosing” a word --> removing the letters from the inventory --> subtracting
o “no more letters” --> empty inventory
e \When can we prune a branch e.g. we know we can’t find a solution this way?
o 8-queens: no safe place for a queen, here can’t subract
e Let’s go through a trace of “george bush” ([beegghorsu])
text=[beegghorsu]
bee, text=[gghorsu]

bee
go, text=[ghrsu]
bee
go
gush, text=[r]
bee
go
gush
shrug

shrug, text=[]
print [bee, go, shrug]
e Some other points
o We’re going to be needing the letter inventory associated with each word in the dictionary
a ton - so we only compute it once
o There’s also going to be a ton of irrelevant words (ones that cannot possibly be part of the
anagram)
m We'll “prune” out these words before starting to backtrack to find anagrams of a

phrase
o This is not very much code, but very tricky to understand.

