Lecture 7: Linked Nodes
e \We've looked at an array-based structure (ArrayList)
o Why did we need ArrayList in the first place?
m Can’t expand an array - why?
m Because arrays are stored as chunks of memory
o So why even store data as chunks at all?
m It makes it fast - O(1) lookup
m (random access)
o What other things to arrays do badly?
m adding/removing in the middle
m Ex. you have 10,000 values and want to remove the first value - have to scoot all
9,999 other values
o So what we're going to do - break up the single chunk, and in so doing be able to
add/remove efficiently
m Give up random access
m “opposite” benefits of ArrayList
e The changes to make
o An array:

0 2 4 2 1 7

o But now we don’t need everything contiguous in memory - scattered
m (little boxes everywhere: 23, 2, 40, 0, 14, 72)
o But alist needs ORDER, so how can we keep track of order?
m Essentially, add an “arrow” from each box to the one that is next
m Each bit of data “points” to the next bit of data
o How do we keep track of the front?
m A “pointer” to the first element of the list
m Is this enough information? YES
m Can follow pointers to every other element of the list
m (like a VHS tape rather than a CD)
o We call each element a NODE
m Like a lego building block
m Consists of two parts: the DATA and an arrow (REFERENCE)
m The difference between a NODE and a REFERENCE to a node is a central one
that we’ll talk about
m Like the difference between a phone number and an actual person
e | store PHONE NUMBERS, not PEOPLE in my phone
e \We're going to develop a LinkedIntList of nodes

e \We draw nodes like this:
data next

o How many fields? What types?
o We'll write the ListNode class - nodes are independent objects
public class ListNode {
public int data;
public ListNode next;
}
o Private fields?
m Not in this case - I'll explain why later in the week why this is ok to do
o ListNode is a “recursive” type - it is defined with a field of its own type
m Thisis OKto do
e Let’s write some code to build up a list with values 3, 7, 12
o First, create the variable list of type ListNode
m We draw this as a single box - stores a REFERENCE (arrow) to a node
e |TISNOT A NODE ITSELF
m What does it store initially? NULL
e The absence of anything
Then, set it equal to a new node
Changes the picture

to————- e +

+===t | data | next |

list | +-+--—> | | |
+-—=+ t—————- t—————- +

What do we want to have the node store as data? 3

What do we want it’s “next” reference to point to? A new node
list.data = 3;

list.next = new ListNode();
o - + - - +
+———+ | data | next | | data | next |
list | +=+-—-> | 3 +——t——> | |
+-——+ - o + F————— F————— +

o Have to be careful about what you’re talking about
m We get “inside” a node by using the dot notation - “follow the arrow”
m Then we give the name of the field that we want to modify
list.next.data = 7;
list.next.next = new ListNode() ;
(draw picture, point out what list, list.next, and list.next.next refer to)
o Set the final data
list.next.next.data

12;
list.next.next.next = null;

o The final box (reference) is NULL - meaning the absence of a value (“terminator”)
o Final assignment to null is actually unnecessary - the default is null
e This is obviously tedious
o Bad way to manipulate a list
o We'd need a list class to hide these details, have the “add”, “remove”, “get” operations

o But for today, we’re not going to worry about those - nodes are hard enough
e But we can make some improvements - add constructors
public class ListNode {
public int data;

public ListNode next;

public ListNode () {
this (0, null);

public ListNode (int data) {
this(data, null);

public ListNode (int data, ListNode next) {
this.data = data;
this.next = next;

}
o Note, we use the “this” notation - all constructors call one “main” constructor
o We could write the previous creation in a single line of code
e Section tomorrow, lots of problems manipulating these nodes, understanding the
data/node/reference distinction
e A problem:

- - + F————— F————— +
+———+ | data | next | | data | next |
p | +=t===> | 2 | F-=t-—> | 4 | /]
+———4 - +————— + +————— +————— +
- +————— + +————— +————— +
+-———+ | data | next | | data | next |
q | +=t===> | 3 | Am=t===> |9 |/
+———+ - - + F————— F————— +
AFTER
- - + F————— F————— + +————— +————— +
+———+ | data | next | | data | next | | data | next |
p | +=t=-=-> | 2 | F—t——=> | 4 | F—t——=> | 3 /]
+———4 - +————— + +————— +————— + - +————— +

+-——+ | data | next
q | +=t===> | 9 | /
+-——+ o e

e Solution
o How many variables of type ListNode do we have?
m SIX
o Number the boxes - which ones need to change?
o But we have to be careful about the order of the changes
m What if we changed the “q” box first to point to the 9? Then we’d “lose” the 3
because we’d have no way to refer to it
m Like having helium balloons and losing the string - fly away
o Which box is it “safe” to change”?
m The one with “9” as data b/c the “next” is already “null”
e Grasp debugger
e Very important to draw PICTURES
o The variables can be very confusing
o Only way to master LinkedList code
e Talk about NULL
o What you can do with null
m Store it
m Testforit
m Printit
m Passit
m Returnit
o What you can’t do with it
m Dereference it (NullPointerException)
o jGrasp interactions pane
e More exercises
o Turn[10, 20, 30] into [20, 30]
o Turn [10, 20] into [30, 10, 20]
o Turn[10, 20] into [10, 20, 30]
o Turn[10, 20,....,990] into [10, 20,, 990, 1000]
m “Stopping one early”
m Use of a “current”
ListNode current = list;
while (current.next != null) {
current = current.next;
}

current.next = new ListNode (1000) ;

