
Lecture 3: More ArrayIntList
• Assignment 1

o Due next Thursday
o Like ArrayIntList, uses arrays to store data
o Stores a collection of letters
o Seems kind of boring, but good review, and we will use it later in the quarter
o Resources

§ Style/commenting guides
§ IPL
§ Message board

• A summary of our ArrayIntList so far
o Added: a second add() method

§ First add calls the second add - less redundancy
o Added: a set() method

§ Why isn’t it enough to have add() and remove() (which could do it)?
o More extensive exception checks
o More commenting

§ This stuff is HARD! We are picky
o An extra private exception check method

§ Must follow the public interface of the spec EXACTLY
§ What if you work for a company
§ Write a “quick and dirty version”, then “nice version”
§ What if the first version had extra methods? People might use them
§ INCLUDES CONSTRUCTORS

• A common operation - adding all element of another structure
o addAll(ArrayIntList other)

 public void addAll(ArrayIntList other) {
 for (int i = 0; i < other.size(); i++)
 add(other.get(i));
 }

o Start by calling add() using accessor methods
o But it can be more efficient to access fields directly

 public void addAll(ArrayIntList other) {
 for (int i = 0; i < other.size; i++)
 add(other.elementData[i]);
 }

o Sometimes you can’t solve the problem at all without field access
o Very useful for your homework - you’ll also have to do some kind of “bulk” method with

another object as a parameter
• Final version: removeAll(ArrayIntList), clear()
• Now I want to switch gears, consider a new concept

o Client code, adds values
o Now let’s write code to find the cumulative sum of the list
o How?

 int sum = 0;
 for (int i = 0; i < list.size(); i++) {
 sum += list.get(i);
 }
 System.out.println("sum = " + sum);

o This works, but I want to consider a different approach: ITERATOR
o This code relies on get(), which relies on fast access into the array

§ Arrays have this fast random access

§ But some other structures we will look at this quarter don’t
§ If you knew you’d only use array-based structures, you’d be fine

o Like DVD vs. VHS
§ Some structures can jump, some must start at the beginning

o May seem silly now, but it will be the ONLY way to iterate through some structures
§ Some structures don’t have indices

• What is an iterator?
o “has next”
o “get next”
o “move to next”
o Java combines the last two operations in one
o Kind of like a Scanner! But on a structure not a file

• Let’s write the skeleton of our ArrayIntListIterator
o Will have 2 methods, next() and hasNext()

• In Java, we usually have the data structure provide the iterator through a method
o iterator()
o Then we can rewrite our cumulative sum:

 ArrayIntListIterator i = list.iterator();
 int sum = 1;
 while (i.hasNext()) {
 int next = i.next();
 sum = sum + next;
 }
 System.out.println("sum = " + sum);

o Good idea to store the i.next() in a variable
§ Avoids duplicate calls

o Can add a println inside the loop for extra clarity
System.out.println("sum = " + sum + ", next = " + next);

• Iterators also support a remove() method
o Removes the last thing that we got with next()
o Special case?

§ If next() hasn’t been called yet
§ If remove() called twice in a row
§ IllegalStateException

o ADD TO SKELETON
o Add code to client to remove 3’s

 if (next == 3)
 i.remove();

• How would we implement the ArrayIntList iterator?
o What will it need to keep track of?

§ Hint: When we did the loop approach, we had a for-loop with an index
§ Position
§ Also the list itself, so we can access the list

o Constructor
§ Parameters?

• The list
• (UPDATE THE ArrayIntList CODE)

§ Second use of the “this” keyword - to distinguish field from parameter
§ Where does position start?

o Let’s look at “next”
§ We return a value - which value?

• The one at “position”

§ How does position change?
o How do we know if there is a next (“hasNext”)?

§ When do we reach the end of the list (same as the for-loop ending condition)
§ Compare with size

o remove()
§ Removes the previous value
§ position - 1
§ Can call the list’s remove() method
§ Not enough - we also have to do position-- (because things shifted)

o Robustness - add exceptions
§ Can’t remove twice in a row, can’t remove at the beginning
§ Add boolean flag
§ Throw exceptions

• In NEXT if no HASNEXT
• In REMOVE if not remove ok

o “Lightweight object”
§ Doesn’t really store any data of its own

• Another issue with our code: if we run out of room!
o Sometimes you will add enough to exceed the capacity
o What should you do?

§ We can’t grow the array, because of how it is stored on the computer
§ Must be CONTIGUOUS - that’s how access is fast
§ Would overwrite some other objects

o Create a new, bigger array, and copy things over
§ How much should we increase the size?

• By 1 --> very inefficient
• Double --> if we grow from 100 to 200, only have to copy once
• “Amortized” - spread out over the 200 adds, the cost of growth is small
• Actual Java ArrayList - 50%

§ Can use Arrays.copyOf()
 public void ensureCapacity(int capacity) {
 if (capacity > elementData.length) {
 int newCapacity = elementData.length * 2 + 1;
 if (capacity > newCapacity) {
 newCapacity = capacity;
 }
 elementData = Arrays.copyOf(elementData, newCapacity);
 }
 }

• Summary
o private fields
o class constants for “magic numbers”
o initialize fields in the constructor
o use “this()” to reduce redundancy in constructor calls
o throw exceptions to prevent misuse of your code
o document all preconditions (including exceptions), postconditions
o boolean zen when dealing with boolean expressions
o when overloading methods, have more general call more specific method
o add private helper methods if needed
o Can access private fields of object in methods of the same class

