Lecture 3: More ArrayintList
« Assignment 1
o Due next Thursday
Like ArrayIntList, uses arrays to store data
Stores a collection of letters
Seems kind of boring, but good review, and we will use it later in the quarter
Resources
= Style/commenting guides
= IPL
= Message board
« A summary of our ArraylIntList so far
o Added: a second add() method
= First add calls the second add - less redundancy
o Added: a set() method
= Why isn'’t it enough to have add() and remove() (which could do it)?
More extensive exception checks
More commenting
= This stuff is HARD! We are picky
o An extra private exception check method
= Must follow the public interface of the spec EXACTLY
= What if you work for a company
= Write a “quick and dirty version”, then “nice version”
= What if the first version had extra methods? People might use them
= INCLUDES CONSTRUCTORS
« A common operation - adding all element of another structure
o addAll(ArrayIntList other)
public void addAll (ArrayIntList other) {
for (int 1 = 0; 1 < other.size(); i++)
add (other.get (1)) ;

o O O O

}
o Start by calling add() using accessor methods
o But it can be more efficient to access fields directly
public void addAll (ArrayIntList other) {
for (int 1 = 0; i < other.size; i++)
add (other.elementDatal[i]) ;
}
o Sometimes you can’t solve the problem at all without field access
Very useful for your homework - you'll also have to do some kind of “bulk” method with
another object as a parameter
« Final version: removeAll(ArraylIntList), clear()
« Now | want to switch gears, consider a new concept
o Client code, adds values
o Now let’s write code to find the cumulative sum of the list

o How?
int sum = 0;
for (int 1 = 0; 1 < list.size(); 1i++) {
sum += list.get (i);
}
System.out.println("sum = " + sum);

This works, but | want to consider a different approach: ITERATOR
This code relies on get(), which relies on fast access into the array
= Arrays have this fast random access

= But some other structures we will look at this quarter don’t
= If you knew you’d only use array-based structures, you’d be fine
o Like DVD vs. VHS
= Some structures can jump, some must start at the beginning
o May seem silly now, but it will be the ONLY way to iterate through some structures
= Some structures don’t have indices
What is an iterator?
o “has next”
o “get next’
o “move to next’
o Java combines the last two operations in one
o Kind of like a Scanner! But on a structure not a file
Let’s write the skeleton of our ArraylntListlterator
o Will have 2 methods, next() and hasNext()
In Java, we usually have the data structure provide the iterator through a method
o iterator()
o Then we can rewrite our cumulative sum:
ArrayIntListIterator 1 = 1list.iterator();
int sum = 1;
while (i.hasNext()) {
int next = i.next();
sum = sum + next;
}
System.out.println("sum = " + sum);
o Good idea to store the i.next() in a variable
= Avoids duplicate calls
o Can add a println inside the loop for extra clarity
System.out.println("sum = " + sum + ", next = " + next);
Iterators also support a remove() method
o Removes the last thing that we got with next()
o Special case?
= If next() hasn’t been called yet
= If remove() called twice in a row
= lllegalStateException
o ADD TO SKELETON
Add code to client to remove 3's
if (next == 3)
i.remove () ;
How would we implement the ArraylintList iterator?
o What will it need to keep track of?
= Hint: When we did the loop approach, we had a for-loop with an index
= Position
= Also the list itself, so we can access the list
o Constructor
= Parameters?
« Thelist
« (UPDATE THE ArraylIntList CODE)
= Second use of the “this” keyword - to distinguish field from parameter
= Where does position start?
o Let’s look at “next”
= We return a value - which value?
« The one at “position”

= How does position change?
o How do we know if there is a next (“hasNext”)?
= When do we reach the end of the list (same as the for-loop ending condition)
= Compare with size
o remove()
= Removes the previous value
= position - 1
= Can call the list's remove() method
= Not enough - we also have to do position-- (because things shifted)
o Robustness - add exceptions
= Can’t remove twice in a row, can’t remove at the beginning
= Add boolean flag
= Throw exceptions
« In NEXT if no HASNEXT
« In REMOVE if not remove ok
o “Lightweight object”
= Doesn't really store any data of its own
« Another issue with our code: if we run out of room!
o Sometimes you will add enough to exceed the capacity
o What should you do?
= We can'’t grow the array, because of how it is stored on the computer
= Must be CONTIGUOUS - that’s how access is fast
= Would overwrite some other objects
o Create a new, bigger array, and copy things over
= How much should we increase the size?
« By 1 -->very inefficient
« Double --> if we grow from 100 to 200, only have to copy once
« “Amortized” - spread out over the 200 adds, the cost of growth is small
« Actual Java ArrayList - 50%
= Can use Arrays.copyOf()
public void ensureCapacity(int capacity) {
if (capacity > elementData.length) {
int newCapacity = elementData.length * 2 + 1;
if (capacity > newCapacity) {
newCapacity = capacity;
}
elementData = Arrays.copyOf (elementData, newCapacity);
}
}
« Summary
private fields
class constants for “magic numbers”
initialize fields in the constructor
use “this()” to reduce redundancy in constructor calls
throw exceptions to prevent misuse of your code
document all preconditions (including exceptions), postconditions
boolean zen when dealing with boolean expressions
when overloading methods, have more general call more specific method
add private helper methods if needed
Can access private fields of object in methods of the same class

o 0O 0O 0 0o 0O o 0o o o

