
Game Programming Exploration
Homework

We’re going to create a simple ScoreKeeper object to interact with our Ball object. We have already

written the interaction code for you, so you just need to make the ScoreKeeper object.

To start, download processing from http://www.processing.org/

You’ll also need the files we made during the exploration session (available as a .zip file):

pong.pde, Entity.pde, Ball.pde, Paddle.pde, Player.pde, Opponent.pde

Recall that we set up a Game Entity Hierarchy as shown below:

Your task (if you choose to accept it) will be to create the ScoreKeeper object. As you can see, we are

treating it as an Entity so we can include it in our update and render routine in pong.pde. As you may

have noticed, we have updated Ball.pde to include a win/loss routine, and we have updated pong.pde

to construct the ScoreKeeper object properly. As a result, the game won’t compile properly until you

implement the ScoreKeeper object. Our Ball object is going to communicate to the score keeper:

Entity

Paddle

Player Opponent

Ball (ScoreKeeper)

Ball

ScoreKeeper

Hey man, I flew

off the score..

The player wins.
I gotchu!

http://www.processing.org/

The ball does this by storing a Reference to the ScoreKeeper object (much like how LinkedListNodes

store References to other Nodes). You can see this by looking at the Ball constructor. We then can “let

the score keeper know” that something happened by calling methods on our ScoreKeeper reference,

and the keeper can react properly (I.E. change its’ score).

Therefore we must write the following methods in ScoreKeeper for it to compile. You can write the

method stubs, compile, and fill in the rest as you go:

public ScoreKeeper() Constructs a ScoreKeeper. Calls the Entity
super() constructor to specify and x, y, width,
and height. Both width and height can be 0. X
and Y will determine where we display our
score.

public void update() We have to implement this(since we promised
we were an Entity), but nothing goes in here
because at least for our purposes,
ScoreKeeper doesn’t update based on the
game loop. (You could make it move or
something though, in which case you would
use this)

public void render() This is where we render the score. Processing
as a built in “magic function” called
text(String, float, float), which takes a String to
render, a x position, and a y position.

public void opponentWin() This is called by our ball signaling that the
opponent has won a round. Increment the
appropriate score here.

public void playerWin() This is called by our ball signaling that the
player has won a round. Increment the
appropriate score here.

I hope you enjoyed the exploration session! Feel free to send me (necha@cs.washington.edu) any cool

things you make in the future. I’d love to see them!

Game programming is an awesomely complicated and deep topic. It’s also very fun! Remember, that

most game “cool” effects are actually simple to implement and are mostly tricks. Check out this video

for some topics on how to make the game “look” better:

https://www.youtube.com/watch?v=Fy0aCDmgnxg

-Aaron Nech

mailto:necha@cs.washington.edu
https://www.youtube.com/watch?v=Fy0aCDmgnxg

