
CSE 143 Au04 Final Exam Sample Solution Page 1 of 11

Reference information about many standard Java classes appears at the end of the test.
You might want to tear off those pages to make them easier to refer to while solving the
programming problems.

Question 1. (6 points) (a) Prove that 3n2 + 25n + 17 is O(n2).

To prove this we need to find some constant c such that 3n2 + 25n + 17 ≤ cn2 for all
sufficiently large values of n. If we pick c to be 4, for example, that will be sufficient.

(b) Prove that 3n2 + 25n + 17 is O(n3).

The proof is almost the same as in part (a): we need to find some constant c such that
3n2 + 25n + 17 ≤ cn3 for all sufficiently large values of n. If we pick c to be any positive
number, that will be sufficient.

(c) Which of the two proofs in parts (a) and (b) of this question provides the most useful
information and why?

The proof from part (a) that 3n2 + 25n + 17 is O(n2) is more useful since it provides a
tighter (smaller) bound on the size.

CSE 143 Au04 Final Exam Sample Solution Page 2 of 11

Question 2. (2 points) When defining a new class in Java, the standard advice is that if we
override the inherited equals(Object) method we should also override the inherited
hashCode() method. What relationship should be true between the methods equals and
hashCode?

The basic rule is if o1.equals(o2) then o1.hashCode() should equal
o2.hashCode().

Question 3. (4 points) A good implementation of a hash table (HashMap or HashSet, for
example) provides O(1) (constant time) insert and contains operations. Give two distinct
reasons why these operations might be significantly slower, possibly proportional to the
number of items in the hash table.

(i) If the hash function does not generate widely distributed hash codes and instead
assigns the same hash codes to many of the objects, then there will be too many
collisions, resulting in many objects being assigned to the same slot (bucket) in the
table.

(ii) If the number of slots (buckets) in the table is small compared to the number of
objects stored in the table, then operations will take time proportional to the number
of items in the table and will not be constant time.

CSE 143 Au04 Final Exam Sample Solution Page 3 of 11

Question 4. (4 points) Suppose we have two packages Cowboy and Graphics, both of
which contain a class named Draw.

(a) (2 points) Will the following code compile? Why or why not?

 import Cowboy.*;
 import Graphics.*;

 public class Test {
 Draw d;

 /** Constructor */
 public Test() {
 d = new Draw();
 }
 }

The code will not compile because the reference to class Draw is ambiguous.

(b) (2 points) If the code in part (a) won’t compile, how could we fix it so it will? [If the
code in part (a) does compile, leave this part of the question blank for 2 free points!]

Use the full name of the class in the declaration and new operation, either
Cowboy.Draw or Graphics.Draw.

Question 5. (2 points) One of your colleagues is implementing a simple list class, which
contains the following method specification.

 /** Return the object at the given position
 * @param pos position of the desired object in the list
 * @return the selected object
 * @throws IndexOutOfBoundsException if pos is invalid
 */
 public Object get(int pos)throws IndexOutOfBoundsException { … }

Is the “throws IndexOutOfBoundsException” clause in the method heading required,
or can it be omitted? Why?

It can be omitted. IndexOutOfBoundsException is an unchecked exception, so it
doesn’t need to be declared in the method heading.

CSE 143 Au04 Final Exam Sample Solution Page 4 of 11

The next few questions involve single-linked lists of integers. The nodes in the linked lists
are instances of class Link, defined as it was in lecture and in section.

 public class Link { // one node in a linked list
 public int item; // data associated with this link
 public Link next; // next node in the list; null if none

 /** Construct a new node referring to the given object */
 public Link(int item, Link next) { … }
 }

The state of a SimpleLinkedList is represented by these instance variables:

 Link first; // first node in the list; null if empty
 Link last; // last node in the list, null if empty

Question 6. (5 points) You’ve been hired to work on Java 6 (or 1.6, or whatever
marketing will eventually call it) and have been asked to write a method to sum up the
values in a list, but for whatever reason your boss says that you can’t use a loop. However,
it’s fine if you use recursion.

To compute the sum of the list we call the following method:

 /** return the sum of the ints in the list */
 public int sum() {
 return sumFrom(first);
 }

Complete the definition of the following method so it returns the sum of the list starting at
the given node. For full credit, you may not use iteration – use recursion instead.

 /** return the sum of the ints in the list starting at node p */
 public int sumFrom(Link p) {

 if (p == null) {

 return 0;

 } else {

 return p.item + sumFrom(p.next);

 }

 }

CSE 143 Au04 Final Exam Sample Solution Page 5 of 11

Question 7 (9 points) Our simple array-based list implementation included an iterator
class that provided the standard hasNext() and next() operations. For this question,
complete the following methods to provide an iterator for the SimpleLinkedList class
implemented as described on the previous page. You should assume that this iterator class
definition is nested inside the SimpleLinkedList class definition, so it has direct access
to any instance variables and methods in that class that it needs.

 /** Iterator class for a SimpleLinkedList */
 public class SimpleLinkedListIterator {

 // declare any instance variables you need here

 private Link nextItem; // next item to be returned by
 // next() or null if no more items
 // in the iteration

 /** Construct a new SimpleLinkedListIterator */
 public SimpleLinkedListIterator() {

 nextItem = first;

 }

 /** Return true if there are more items in this iteration */
 public boolean hasNext() {

 return nextItem != null;

 }

 /** Return the next item in this iteration.
 * @throws NoSuchElementException if no more elements */
 public int next() {

 if (nextItem == null) {

 throw new NoSuchElementException();

 }

 int result = nextItem.item;

 nextItem = nextItem.next;

 return result;

 }
 }

CSE 143 Au04 Final Exam Sample Solution Page 6 of 11

Question 8 (8 points) Another possible use of linked data structures is to implement
stacks (the same behavior as an array-based implementation, but with a different
underlying data structure). For reference, the definition of a link is repeated here.

 public class Link { // one node in a linked list
 public int item; // data associated with this link
 public Link next; // next node in the list; null if none

 /** Construct a new node referring to the given object */
 public Link(Object item, Link next) { … }
 }

Complete the definitions of the constructor and methods push and pop below to
implement a stack. The constructor and one instance variable are provided for you. You
can add additional instance variables and modify the constructor if you need to.

 public class SimpleStack {
 // instance variables
 private Link top; // top of stack or null if the
 // stack is empty

 /** Construct a new empty stack */
 public SimpleStack() {

 top = null;

 }

 /** Push item onto the top of the stack */
 public void push(int item) {

 top = new Link(item, top);

 }

 /** Return the top item on the stack and delete it.
 * @throws NoSuchElementException if the stack is empty. */
 public int pop() throws NoSuchElementException {

 if (top == null) {

 throw new NoSuchElementException();

 }

 int result = top.item;

 top = top.next;

 return result;

 }
 }

CSE 143 Au04 Final Exam Sample Solution Page 7 of 11

Question 9 (8 points) The tree traversals that we have looked at are known as depth-first
traversals. The essential idea is that we completely visit a subtree of a node, including all
the nodes in the subtree, before we visit the other subtrees of that node.

Another possible strategy is a breadth-first traversal. In this strategy, we first visit the root,
then we visit all of the root’s immediate children, then all the children at the next level of
the tree, and so forth. For example, the nodes in the following tree are numbered in the
order they would be reached in a breadth-first traversal.

Assume that we have a binary tree containing String data values whose nodes are
represented as follows.

 public class BTNode { // one node in a binary tree
 public String value; // value stored in this node
 public BTNode left; // left subtree or null if empty
 public BTNode right; // right subtree or null if empty
 }

Complete the definition of method btraversal on the next page so it does a breadth-first
traversal of the tree with the given root and prints out all the strings contained in the tree in
breadth-first order. If you need additional helper methods, feel free to declare them. You
can declare any instance variables that you need outside the btraversal method.

Hint: One useful strategy for doing this is to keep a queue of nodes that you have visited,
but whose children have not been visited. Initially put the root in this queue, then visit the
nodes in the queue one by one. Each time you visit a node, print out its contents and add
its children to the end of the queue.

Second hint: Recursion may or may not be your friend. Take a couple of minutes to think
about your solution strategy before you start coding.

1

2 3

5 6 4

7 8

CSE 143 Au04 Final Exam Sample Solution Page 8 of 11

Question 9 (cont).

 // Declare any instance variables you need here

 /** Perform a breadth-first traversal of tree t and
 * print all of the strings in the nodes in the order
 * they are reached */
 public void btraversal(BTNode t) {

 LinkedList toVisit = new LinkedList(); // nodes to visit

 if (t == null) {

 return; // nothing to do

 }

 // t not null – add it to the list to visit

 toVisit.add(t);

 // visit nodes on the list while there are any

 while (toVisit.size()) > 0) {

 BTNode p = (BTNode)toVisit.removeFirst();

 System.out.println(p.value);

 if (p.left != null) {

 toVisit.add(p.left);

 }

 if (p.right != null) {

 toVisit.add(p.right);

 }

 }

 }

CSE 143 Au04 Final Exam Sample Solution Page 9 of 11

Question 10. (10 points) This question involves processing a text stream to accumulate
some statistics. The input data consists of one or more lines that each contain a last name,
a first name, and the letter M or F to indicate the person’s sex. For example:

 Smith Sue F
 Jones Ralph M
 Moose Bullwinkle M
 Bird Tweety F

Complete the method percentFemale, below, so it returns the percentage of the number
of lines in the stream where the sex is F. You can assume that the sex is always capitalized
so you only need to check for M or F. You can also assume that there are no extra leading
or trailing blanks or other characters at the beginning or end of the input lines, and you can
assume that there is at least one line in the input stream.

Hint: The last couple of pages of the exam contain some summary information about Java
stream and string classes that you might find useful.

 /** Return the percentage of lines in the input stream where
 * the third entry on the line is the string “F”.
 * @param in the input stream to read from */
 public double percentFemale(BufferedReader in) {

 int nLines = 0; // # of lines in the stream

 int nF = 0; // # of lines ending in ‘F’

 try {

 String line = in.readLine();

 while (line != null) {

 nLines++;

 if (line.substring(line.length()-1).equals(“F”)) {

 nF++;

 }

 line = in.readLine();

 }

 } catch (IOException e) {}

 return (double)nF/nLines;

 }

There is still a potential bug in this code: if an exception is thrown when reading the
first line, then the division at the end would divide 0/0. This and similar issues were
ignored during grading, since the problem was worded to imply that it would be
possible to read at least one line from the stream.

CSE 143 Au04 Final Exam Sample Solution Page 10 of 11

Question 11. (8 points) We looked at several implementations of collections – arrays,
linked lists, trees, binary search trees, and hash tables. Different operations on these data
structures had different expected and worst-case times. Complete the tables below with the
expected and worst case times (using O()-notation) for the different operations on the given
data structures. You should assume that suitable instance variables are used to make
operations reasonably fast instead of having to, for example always traverse the complete
data structure to count the number of items in it.

(a) Expected times

Operation
Sorted array-
based list

Unsorted
Linked list

Binary
search tree Hash set

Add item to
the collection O(n) O(1) O(log n) O(1)

Search for
item O(log n) O(n) O(log n) O(1)

Return size of
the collection O(1) O(1) O(1) O(1)

(b) Worst-case times

Operation
Sorted array-
based list

Unsorted
Linked list

Binary
search tree Hash set

Add item to
the collection O(n) O(1) O(n) O(n)

Search for
item O(log n) O(n) O(n) O(n)

Return size of
the collection O(1) O(1) O(1) O(1)

CSE 143 Au04 Final Exam Sample Solution Page 11 of 11

Question 12. (2 points) Write down the words in the following tree in the order they are
reached in an inorder traversal.

have a great winter break and happy new year (!)

winter

a

have great

break

happy

and year

new

