Building Java Programs

Chapter 9
Lecture 19: Inheritance, Polymorphism;

reading: 9.2

~ Copyright 2008 by Pearson Education

I STARTED A TASK
FORCE TO ELIMINATE
REDUNDANCIES IN OUR
INTERNAL PROCESSES.

Em Copyright 2008 by Pearson Education

t@gmail com

S22 02001 Scott Adams, INC. Dt by Universal Uckck

/ = =
The software crisis

» software engineering: The practice of developing,
designing, documenting, testing large computer
programs.

e Large-scale projects face many issue:
» programmers working together

getting code finished on time

avoiding redundant code

finding and fixing bugs

maintaining, reusing existing code

» code reuse: The practice of writing program code once
and using it in many contexts.

B 2!
U7 Copyright 2008 by Pearson Education

=
Law firm employee analogy

e common rules: hours, vacation, benefits, regulations ...

» all employees attend a common orientation to learn general
company rules

» each employee receives a 20-page manual of common rules

e each subdivision also has specific rules:

» employee receives a smaller (1-3 page) manual of these rules

» smaller manual adds some new rules and also changes some
rules from the large manual

Employee
20-page manual

Marketer
3-page manual

secretary
1-page manual

Lawyer
Z2-page manual

—

LegalSecretary
1-page manual 4

" Copyright 2008 by Pearson Education

Separating behavior

* Why not just have a 22 page Lawyer manual, a 21-page
Secretary manual, a 23-page Marketer manual, etc.?

* Some advantages of the separate manuals:
» maintenance: Only one update if a common rule changes.
» locality: Quick discovery of all rules specific to lawyers.

* Some key ideas from this example:
» General rules are useful (the 20-page manual).
» Specific rules that may override general ones are also useful.

B S
' Copyright 2008 by Pearson Education

J—
Is-a relationships, hierarchies

* is-a relationship: A hierarchical connection where one
category can be treated as a specialized version of
another.

» every marketer is an employee
» every legal secretary is a secretary

* inheritance hierarchy: A set of classes connected by is-
a relationships that can share common code.

C Fowe

_,___/ _ e
G ;’:3

‘’——Z‘ -— —
ERE Com) Cim D
@n &B Yrian glo Ciu£>

Copyright 2008 by Pearson Education

Employee regulations

» Consider the following employee regulations:
« Employees work 40 hours / week.

« Employees make $40,000 per year, except legal secretaries who
make $5,000 extra per year ($45,000 total), and marketers who
make $10,000 extra per year ($50,000 total).

« Employees have 2 weeks of paid vacation leave per year, except
lawyers who get an extra week (a total of 3).

« Employees should use a yellow form to apply for leave, except for
lawyers who use a pink form.

* Each type of employee has some unique behavior:
» Lawyers know how to sue.
» Marketers know how to advertise.
» Secretaries know how to take dictation.
» Legal secretaries know how to prepare legal documents.

Copyright 2008 by Pearson Education

J—
An Employee class

// A class to represent employees in general (20-page manual).
public class Employee {
pallsEe iR ge ot R s)R
return 40; // works 40 hours / week

}

public double getSalary() {
e kO G AN E AT // $40,000.00 / year

}

pricibleininis o e icattomiBan s
e uen i // 2 weeks' paid vacation

}

pRdcible s nnlin e Grel i iaa sidil o TiE eatn (A
return "yellow"; // use the yellow form

}

» Exercise: Implement class secretary, based on the previous
employee reqgulations. (Secretaries can take dictation.)

~ Copyright 2008 by Pearson Education

Redundant Secretary class

// A redundant class to represent secretaries.
pribisEetsetasainsemrabpieva
pallsEe iR ge ot R s)R
return 40; // works 40 hours / week

}

public double getSalary () {
e kO G AN E AT // $40,000.00 / year

}

oo e e e P e e e e N D e bl
e uen i // 2 weeks' paid vacation

}

pRdcible s nnlin e Grel i iaa sidil o TiE eatn (A
return "yellow"; // use the yellow form

}

public void takeDictation (String text) {
System.out.println("Taking dictation of text: " + text);

}

o) e

" Copyright 2008 by Pearson Education

—

—_ .
Desire for code-sharing

* takeDictation is the only unique behaviorin secretary.

» We'd like to be able to say:

// A class to represent secretaries.

publsieiekassiseeratgryay
copy all the contents from the Employee class;

public void takeDictation(String text) {
Sy kEemrontiprintin (It PalcingitdicEabion o e x it asciyss

}

10

" Copyright 2008 by Pearson Education

J—
Inheritance

* inheritance: A way to form new classes based on
existing classes, taking on their attributes/behavior.
» a way to group related classes
* a way to share code between two or more classes

* One class can extend another, absorbing its
data/behavior.
» superclass: The parent class that is being extended.

» subclass: The child class that extends the superclass and
inherits its behavior.
« Subclass gets a copy of every field and method from superclass

Copyright 2008 by Pearson Education

11

Inheritance syntax

public class name extends superclass {

 Example:

public class Secretary extends Employee ({

* By extending Employee, each Secretary object now:

e receives a getHours, getSalary, getVacationDays, and
getVacationForm method automatically

» can be treated as an Employee by client code (seen later)

B 65
: Copyright 2008 by Pearson Education

J—
Improved Secretary code

// A class to represent secretaries.
public class Secretary extends Employee
publfie s voidatakeBictalbi oS EringEex s
VA SV S DA Ty O A M DS O B G B B A AR o M O o v B OF A Tee & e S S b & i B, v S oD e
}

* Now we only write the parts unique to each type.

e Secretaryinherits getHours, getSalary, getVacationDays,
and getVacationForm methods from Employee.

* Secretaryadds the takeDictation method.

- 13
""" Copyright 2008 by Pearson Education

/ =
Implementing Lawyer

» Consider the following lawyer regulations:
» Lawyers who get an extra week of paid vacation (a total of 3).
» Lawyers use a pink form when applying for vacation leave.
» Lawyers have some unique behavior: they know how to sue.

* Problem: We want lawyers to inherit most behavior from
employee, but we want to replace parts with new
behavior.

—— 14
L Copyright 2008 by Pearson Education

J—
Overriding methods

» override: To write a new version of a method in a
subclass that replaces the superclass's version.

* No special syntax required to override a superclass method.
Just write a new version of it in the subclass.

public class Lawyer extends Employee ({
// overrides getVacationForm method in Employee class
public String getVacationForm() ({
return "pink";

}

» Exercise: Complete the Lawyer class.
« (3 weeks vacation, pink vacation form, can sue)

e 15
: Copyright 2008 by Pearson Education

J—
Lawyer class

// A class to represent lawyers.

public class Lawyer extends Employee ({
// overrides getVacationForm from Employee class

publiesstring getVacationEormi) 1
reburn Y panletts

}

// overrides getVacationDays from Employee class

pridciRte s o s iicattyomiB s
e o // 3 weeks vacation

}

prdciblehronlic el B
Shistuenie thermnanta smaEGiE S et ouithilnie o

}

» Exercise: Complete the Marketer class. Marketers make

$10,000 extra ($50,000 total) and know how to advertise.

"7 Copyright 2008 by Pearson Education

16

J—
Marketer class

// A class to represent marketers.
public class Marketer extends Employee {
public void advertise() {
VAN oYV S YD ATy OB Sk S A ey A S N S A) e S B B b SR SH B L o1 S o SHoretd B R b e by o)

}

public double getSalary () {
e e kO G MO E AN // $50,000.00 / year

}

17

o _Copyright 2008 by Pearson Education

Levels of inheritance

» Multiple levels of inheritance in a hierarchy are allowed.

« Example: A legal secretary is the same as a regular secretary
but makes more money ($45,000) and can file legal briefs.

public class LegalSecretary extends Secretary ({

» Exercise: Complete the LegalSecretary class.

£ 18
: Copyright 2008 by Pearson Education

J—
legalSecre 2y ClASS

// A class to represent legal secretaries.
public class LegalSecretary extends Secretary {
public void filelegalBriefs () {
VAN oYV S YDA Ty O A B S o B G v YO T U Mo v e i S ere MBS ey (2 el ey)

}

public double getSalary () {
e et ALt G AN E AT // $45,000.00 / year

}

.
| 8 19
" Copyright 2008 by Pearson Education

N‘

Interacting with the
Superclass (super)

reading: 9.2

F

Changes to common behavior

* Imagine a company-wide change affecting all employees.

Example: Everyone is given a $10,000 raise due to inflation.
» The base employee salary is now $50,000.

» Legal secretaries now make $55,000.

» Marketers now make $60,000.

* We must modify our code to reflect this policy change.

21

Copyright 2008 by Pearson Education

J—
Modifying the superclass

// A class to represent employees in general (20-page manual).
publrerclassEmployec
public int getHours () {
return 40; // works 40 hours / week

}

Brieiniei detiiictiearn Sl otmyali
return 50000.0; // $50,000.00 / year

}

}

e Are we finished?

* The Employee subclasses are still incorrect.
» They have overridden getSalary to return other values.

= 22

[y——

~ Copyright 2008 by Pearson Education

"”/;,fff”f:;—“

L —

An unsatisfactory solution

public class LegalSecretary extends Secretary {

Rliihieitel oliloiboiichalioanlic iy d e
return 55000.0;

}

public class Marketer extends Employee ({
aiviveltdenibiic oo ineitlianara |

return 60000.0;
}
}

» Problem: The subclasses' salaries are based on the Employee
salary, but the getsalary code does not reflect this.

23

"~ Copyright 2008 by Pearson Education

J—
Calling overridden methods

e Subclasses can call overridden methods with super
super . method (parameters)

 Example:

public class LegalSecretary extends Secretary {
public double getSalary () {
double baseSalary = super.getSalary();
return baseSalary + 5000.0;

e 24
U7 Copyright 2008 by Pearson Education

Inheritance and constructors

* Imagine that we want to give employees more vacation
days the longer they've been with the company.
» For each year worked, we'll award 2 additional vacation days.

« When an Employee object is constructed, we'll pass in the
number of years the person has been with the company.

» This will require us to modify our Employee class and add
some new state and behavior.

» Exercise: Make necessary modifications to the Employee class.

e 25
L Copyright 2008 by Pearson Education

Modified Employee class

Rtilikichr el oisic T Pl e e ol
private int years;

public Employee (int initialYears) ({
years = initialYears;

}

Pl e aitig s o
return 40;

}

plisllieitcdoliviicatig s el e diini)
return 50000.0;
}

JRBE o L e Bs N o o e ok s Mo A YR la By st (ki)
return 10 + 2 * years;

}

public String getVacationForm() {
return "yellow";

Bl 26
"~ Copyright 2008 by Pearson Education

Problem with constructors

* Now that we've added the constructorto the Employee
class, our subclasses do not compile. The error:

Fapor S us et e S Riniek SR el schumlo o
symbol : constructor Employee ()
location: class Employee

public class Lawyer extends Employee {

A

» The short explanation: Once we write a constructor (that
requires parameters) in the superclass, we must now write
constructors for our employee subclasses as well.

» The long explanation: (next slide)

B 2
& Copyright 2008 by Pearson Education

"”/;,fff”f:;—“

The detailed explanation

» Constructors are not inherited.
» Subclasses don't inherit the Employee (int) constructor.

o Subclasses receive a default constructor that contains:

i e R L el
super () ; // calls Employee() constructor

}

e But our Employee (int) replaces the default Employee ().

» The subclasses' default constructors are now trying to call a
non-existent default Employee constructor.

£ 28
: Copyright 2008 by Pearson Education

J—
Calling superclass constructor

super (parameters) ;

 Example:
v llsdinie @il iic T civnc i e salie il meiliecicd
public Lawyer (1nt years) {
super (years); // calls Employee constructor

}

}

» The super call must be the first statement in the constructor.

o Exercise: Make a similar modification to the Marketerclass.

B 29
U7 Copyright 2008 by Pearson Education

Modified Marketer class

// A class to represent marketers.
public class Marketer extends Employee {
public Marketer (int years) {
super (years) ;

}

public void advertise () {
System.out.println ("Act now while supplies last!");

}

public double getSalary () {
return super.getSalary() + 10000.0;

}

» Exercise: Modify the secretarysubclass.
« Secretaries' years of employment are not tracked.

« They do not earn extra vacation for years worked.

- 30
""" Copyright 2008 by Pearson Education

Modified Secretary class

// A class to represent secretaries.
public class Secretary extends Employee {
public Secretary() {
super (0) ;

}

public void takeDictation(String text) {
Systemioutiprintin (T faking “dictalifon o Fext N s ascl)
}

» Since secretarydoesn't require any parameters to its
constructor, LegalSecretary compiles without a constructor.
« Its default constructor calls the secretary () constructor.

B S
U7 Copyright 2008 by Pearson Education

J—
Inheritance and fields

* Try to give lawyers $5000 for each year at the company:

public class Lawyer extends Employee ({

public double getSalary() {
return super.getSalary() + 5000 * years;
}

)
* Does not work; the error is the following:

i el i e ol b s e cive B e e e Sl st meilla e &
EelFirrnsuperigekSal gy SRRy enass:

* Private fields cannot be directly accessed from
subclasses.
 One reason: So that subclassing can't break encapsulation.

» How can we get around this limitation?

e B2
: Copyright 2008 by Pearson Education

J—
Improved Employee code

Add an accessor for any field needed by the subclass.

public class Employee {
private int years;

public Employee(int initialYears) {
years = initialYears;
}

public int getYears() {
return years;
}

}

public class Lawyer extends Employee ({
SRyl S N e e R RV S Ik o Ao v Yo Mk B
super (years) ;

}

public double getSalary () {
return super.getSalary() + 5000 * getYears():
}

Bl L]
U7 Copyright 2008 by Pearson Education

Revisiting Secretary

* The secretary class currently has a poor solution.

» We set all Secretaries to O years because they do not get a
vacation bonus for their service.

o If we call getYears ona secretaryobject, we'll always get 0.

e This isn't a good solution; what if we wanted to give some
other reward to all employees based on years of service?

e Redesign our Employee class to allow for a better
solution.

B2 34
' Copyright 2008 by Pearson Education

J—
Improved Employee code

o Let's separate the standard 10 vacation days from those
that are awarded based on seniority.

Plleiisiaineil s siieilie e
private int years;

eiEletlE e et e e o e e RS e e
years = initialYears;

}

Pt ieninnistgc e esisieonBeys
return 10 + getSeniorityBonus() ;

}

// vacation days given for each year in the company
public int getSeniorityBonus () ({
return 2 * years;

}
} o

» How does this help us improve the Secretary?

35
Copyright 2008 by Pearson Education

J—
Improved Secretary code

- Secretary can selectively override getSeniorityBonus;
when getvVacationDays runs, it will use the new version.
» Choosing a method at runtime is called dynamic binding.

public class Secretary extends Employee {
public Secretary(int years) {
super (years) ;

}

// Secretaries don't get a bonus for their years of service.

public int getSeniorityBonus() {
return O;

}

L S e S N S e o T B G B S M A O o eSO R B o B e

ARl o N c A N AR s e RE N Ga ol Lo M e ee o N B0 SR S D B =D G S e L e S SR

}

"7 Copyright 2008 by Pearson Education

L —

(SE 14/ ([IEEerS

o Ant
o Rl

|
5 .8
. 2 .
Vj r
° ') .5 ° g ¥ : . . O EU=
iEBHeNe 3 R et
1 L -) 5) . . + 25 alive
. . 8 . w + 0 kills
o L ERL) e + 0 food
l] l] re S] . B _ - i = 25 TOTAL
' . RN . . - send | Get
e Husky creative S e
. L . .
u S 8. i .- o 5 o W. + 25 alive
Ls o 5 s. 1 L + 0 kills
w AWE e 0 food
w L 25 TOTAL
. 8
LS ... L .
B L o . 55 o + 25 alive
= w B o + 0 kills
. L °n 3 . . . + 0 food
: I o 50 B R w * = 25 TOTAL
7 . 88 L .
W . Tiger
” L o . L o
* eat eating food T =g d T
. . + 0 kills
ea g . L LB 5 . 8 . + 0 food
8. . L . . . =
35 5 5 5 25 TOTAL

® Fight animal fighting L -

$ g wtolon
® getMove

oSk ring

o) e

—

color to display

movement
letter to display

" Copyright 2008 by Pearson Education

D7

e
/ 1
A 1 iitcl SslIbelass

plsline «la=c NAINEe extends Gratter 10 0)

Bllsiie sl el @ikl |
publiie beolican ol
public Attack fight (String opponent)
W RezE Eomlien. | cloR G
el e @o e eilE@ell e ()
public Direction getMove ()
// NORTH, SOUTH, EAST, WEST, CENTER
piblic String toStEIing()

—_— 38
:'___ Copyright 2008 by Pearson Education

Ry

How the simulator works

e "Go" - loop:
» move each animal (getMove)
« if they collide, fight
« if they find food, eat

e Simulatoris in control!

* getMove IS one move at a time
o (no loops)

» Keep state (fields)

« to remember future moves

£ 39
" Copyright 2008 by Pearson Education

Development Strategy

* Do one species at a time

» in ABC order from easier to harder (Ant - Bird > ...)
e debug printilns

e Simulator helps you debug
» smaller width/height
» fewer animals
* "Tick" instead of "Go"
 "Debug"” checkbox
» drag/drop to move animals

e 40
: Copyright 2008 by Pearson Education

. .
Critter exercise: Cougar

* Write a critter class Cougar:

Method Behavior

constructor |public Cougar ()

eat Always eats.

ol Always pounces.

getColor Blue if the cougar has never fought; red if he
has.

getMove Walks west until he finds food; then walks east
until he finds food; then goes west and
repeats.

EoStEring el

B 41
L Copyright 2008 by Pearson Education

J—
Ideas for state

* You must not only have the right state, but update that
state properly when relevant actions occur.

e Counting is helpful:

» How many total moves has this animal made?
« How many times has it eaten? Fought?

* Remembering recent actions in fields is helpful:

e Which direction did the animal move last?
« How many times has it moved that way?

» Did the animal eat the last time it was asked?
» How many steps has the animal taken since last eating?
» How many fights has the animal been in since last eating?

Copyright 2008 by Pearson Education

42

/ m
Cougar solution

import java.awt.*; // for Color

public class Cougar extends Critter {
private boolean west;
private boolean fought;

pubiEreCongar Gy
west = true;
fought = false;

}

el bl e riaeloiic gl =it
west = l!west;
lastnhichrasmnhia:

}

preibnesibiraeistErahiEissringitoppionc e

e e s
return Attack.POUNCE;

N
" Copyright 2008 by Pearson Education

43

/ m
Cougar solution

publkircEColorgetColor ()
SRS R Eo Nl oo R
reEnrnsEolor s RE R
} else {
reERnrnsEolor B

}
}

pileiliciiBnles sanienisieromioyeunl
if (west) {
e i il Bistise et e il Eacis
hheahiae e
return Direction.EAST;

}
}

ol et Sbumiin i iSiibicl I
S sREeh et A

}

-
: 44
" Copyright 2008 by Pearson Education

Critter exercise: Snake
Method Behavior
constructo |public Snake ()
=
eat Never eats
Eiohis always forfeits
getColor |black
eiciiioy. FE S 2Nl Se g E | S gy] S 5
EoSkEEing jncy ils
18| 3E
aw S
S
b
ZE

Copyright 2008 by Pearson

)

Education

45

/ = = .
Determining necessary fields

e Information required to decide what move to make?
» Directionto go in
» Length of current cycle
» Number of moves made in current cycle

* Remembering things you've done in the past:
* an int counter?
* a boolean flag?

B 46
N —_— Copyright 2008 by Pearson Education

/ =
Snake solution

ieleew stk ko i Colon

public class Snake extends Critter {

private int length; // # steps in current horizontal cycle
private int step; // # of cycle's steps already taken

public Snake () {
il ionins i

ST
}
public Direction getMove () {
SiEe B
et et ot e el) // cycle was just completed
length++;
step = 0;
e e iumER e e ol io v ORI
} else 1if (length % 2 == 1) {
return Direction.EAST;
} else {

S) e e D) e Y A R A B
}
}

publ e st ringatoSt ring
bbb HHE S
}

}

gl 47
!m Copyright 2008 by Pearson Education

