
Copyright 2010 by Pearson Education

Building Java Programs

Chapter 8
Lecture 8-2: Object Behavior (Methods)
and Constructors, Encapsulation, this

reading: 8.2 - 8.3, 8.5 – 8.6
self-checks: #13-17

exercises: #5

Copyright 2010 by Pearson Education
2

Copyright 2010 by Pearson Education
3

Why objects?
  Primitive types don't model complex concepts well

  Cost is a double. What's a person?
  Classes are a way to define new types
  Many objects can be made from those types

  Values of the same type often are used in similar ways
  Promote code reuse through instance methods

Copyright 2010 by Pearson Education
4

Recall: Instance methods
  instance method (or object method): Exists inside

each object of a class and gives behavior to each object.

 public type name(parameters) {
 statements;
 }

  same syntax as static methods, but without static keyword

 Example:

 public void shout() {
 System.out.println("HELLO THERE!");
 }

Copyright 2010 by Pearson Education
5

public double distanceFromOrigin() {
 // this code can see p2's x and y
 return Math.sqrt(x * x + y * y);
}

  Each Point object has its own copy of the distanceFromOrigin
method, which operates on that object's state:

Point p1 = new Point();
p1.x = 7;
p1.y = 2;

Point p2 = new Point();
p2.x = 4;
p2.y = 3;

p1.distanceFromOrigin();
p2.distanceFromOrigin();

public double distanceFromOrigin() {
 // this code can see p1's x and y
 return Math.sqrt(x * x + y * y);
}

Point objects w/ method

x 7 y 2

x 4 y 3
p2

p1

Copyright 2010 by Pearson Education
6

Kinds of methods
  accessor: A method that lets clients examine object

state.
  Examples: distance, distanceFromOrigin
  often has a non-void return type

  mutator: A method that modifies an object's state.
  Examples: setLocation, translate

Copyright 2010 by Pearson Education
7

Printing objects
  By default, Java doesn't know how to print objects:

Point p = new Point();
p.x = 10;
p.y = 7;
System.out.println("p is " + p); // p is Point@9e8c34

// better, but cumbersome; p is (10, 7)
System.out.println("p is (" + p.x + ", " + p.y + ")");

// desired behavior
System.out.println("p is " + p); // p is (10, 7)

Copyright 2010 by Pearson Education
8

The toString method
tells Java how to convert an object into a String

 Point p1 = new Point(7, 2);
 System.out.println("p1: " + p1);

 // the above code is really calling the following:
 System.out.println("p1: " + p1.toString());

  Every class has a toString, even if it isn't in your code.
  Default: class's name @ object's memory address (base 16)

 Point@9e8c34

Copyright 2010 by Pearson Education
9

toString syntax
 public String toString() {
 code that returns a String representing this object;
 }

  Method name, return, and parameters must match exactly.

  Example:
 // Returns a String representing this Point.
 public String toString() {
 return "(" + x + ", " + y + ")";
 }

Copyright 2010 by Pearson Education
10

Variable names and scope
  Usually it is illegal to have two variables in the same

scope with the same name.

 public class Point {
 int x;
 int y;
 ...

 public void setLocation(int newX, int newY) {
 x = newX;
 y = newY;
 }
 }

  The parameters to setLocation are named newX and newY to
be distinct from the object's fields x and y.

Copyright 2010 by Pearson Education
11

Variable shadowing
  An instance method parameter can have the same name

as one of the object's fields:

 // this is legal
 public void setLocation(int x, int y) {
 ...
 }

  Fields x and y are shadowed by parameters with same names.
  Any setLocation code that refers to x or y will use the

parameter, not the field.

Copyright 2010 by Pearson Education
12

Avoiding shadowing w/ this
 public class Point {
 int x;
 int y;

 ...

 public void setLocation(int x, int y) {
 this.x = x;
 this.y = y;
 }
 }

  Inside the setLocation method,
  When this.x is seen, the field x is used.
  When x is seen, the parameter x is used.

Copyright 2010 by Pearson Education
13

this
  this : A reference to the implicit parameter.

  implicit parameter: object on which a method is called

  Syntax for using this:

  To refer to a field:
 this.field

  To call a method:
 this.method(parameters);

  To call a constructor from another constructor:
 this(parameters);

Copyright 2010 by Pearson Education
14

Object initialization:
constructors

reading: 8.3

Copyright 2010 by Pearson Education
15

Initializing objects
  Currently it takes 3 lines to create a Point and initialize

it:
Point p = new Point();
p.x = 3;
p.y = 8; // tedious

  We'd rather specify the fields' initial values at the start:
Point p = new Point(3, 8); // desired; doesn't work (yet)

  We are able to this with most types of objects in Java.

Copyright 2010 by Pearson Education
16

Constructors
  constructor: Initializes the state of new objects.

 public type(parameters) {
 statements;
 }

  runs when the client uses the new keyword

  no return type is specified;
it implicitly "returns" the new object being created

  If a class has no constructor, Java gives it a default constructor
with no parameters that sets all fields to 0.

Copyright 2010 by Pearson Education
17

Constructor example
public class Point {
 int x;
 int y;

 // Constructs a Point at the given x/y location.
 public Point(int initialX, int initialY) {
 x = initialX;
 y = initialY;
 }

 public void translate(int dx, int dy) {
 x = x + dx;
 y = y + dy;
 }

 ...
}

Copyright 2010 by Pearson Education
18

Tracing a constructor call
  What happens when the following call is made?

Point p1 = new Point(7, 2);

public Point(int initialX, int initialY) {
 x = initialX;
 y = initialY;
}

public void translate(int dx, int dy) {
 x += dx;
 y += dy;
}

x
y

p1

Copyright 2010 by Pearson Education
19

Common constructor bugs
1. Re-declaring fields as local variables ("shadowing"):

 public Point(int initialX, int initialY) {
 int x = initialX;
 int y = initialY;
 }

  This declares local variables with the same name as the fields,
rather than storing values into the fields. The fields remain 0.

2. Accidentally giving the constructor a return type:
 public void Point(int initialX, int initialY) {
 x = initialX;
 y = initialY;
 }

  This is actually not a constructor, but a method named Point

Copyright 2010 by Pearson Education
20

Client code, version 3
public class PointMain3 {
 public static void main(String[] args) {
 // create two Point objects
 Point p1 = new Point(5, 2);
 Point p2 = new Point(4, 3);

 // print each point
 System.out.println("p1: (" + p1.x + ", " + p1.y + ")");
 System.out.println("p2: (" + p2.x + ", " + p2.y + ")");

 // move p2 and then print it again
 p2.translate(2, 4);
 System.out.println("p2: (" + p2.x + ", " + p2.y + ")");
 }
}

OUTPUT:
p1: (5, 2)
p2: (4, 3)
p2: (6, 7)

Copyright 2010 by Pearson Education
21

Multiple constructors
  A class can have multiple constructors.

  Each one must accept a unique set of parameters.

  Exercise: Write a Point constructor with no parameters
that initializes the point to (0, 0).

// Constructs a new point at (0, 0).
public Point() {
 x = 0;
 y = 0;
}

Copyright 2010 by Pearson Education
22

Multiple constructors
  It is legal to have more than one constructor in a class.

  The constructors must accept different parameters.

 public class Point {
 private int x;
 private int y;

 public Point() {
 x = 0;
 y = 0;
 }

 public Point(int initialX, int initialY) {
 x = initialX;
 y = initialY;
 }

 ...
 }

Copyright 2010 by Pearson Education
23

Constructors and this
  One constructor can call another using this:

 public class Point {
 private int x;
 private int y;

 public Point() {
 this(0, 0); // calls the (x, y) constructor
 }

 public Point(int x, int y) {
 this.x = x;
 this.y = y;
 }

 ...
 }

Copyright 2010 by Pearson Education
24

Encapsulation
  encapsulation: Hiding implementation details of an

object from its clients.

  Encapsulation provides abstraction.
  separates external view (behavior) from internal view (state)

  Encapsulation protects the integrity of an object's data.

Copyright 2010 by Pearson Education
25

Private fields
  A field can be declared private.

  No code outside the class can access or change it.

 private type name;

  Examples:

 private int id;
 private String name;

  Client code sees an error when accessing private fields:
PointMain.java:11: x has private access in Point
System.out.println("p1 is (" + p1.x + ", " + p1.y + ")");
 ^

Copyright 2010 by Pearson Education
26

Accessing private state
  We can provide methods to get and/or set a field's value:

 // A "read-only" access to the x field ("accessor")
 public int getX() {
 return x;
 }

 // Allows clients to change the x field ("mutator")
 public void setX(int newX) {
 x = newX;
 }

  Client code will look more like this:

 System.out.println("p1: (" + p1.getX() + ", " + p1.getY() +
")");

 p1.setX(14);

Copyright 2010 by Pearson Education
27

Point class, version 4
// A Point object represents an (x, y) location.
public class Point {
 private int x;
 private int y;

 public Point(int initialX, int initialY) {
 x = initialX;
 y = initialY;
 }

 public double distanceFromOrigin() {
 return Math.sqrt(x * x + y * y);
 }

 public int getX() {
 return x;
 }

 public int getY() {
 return y;
 }

 public void setLocation(int newX, int newY) {
 x = newX;
 y = newY;
 }

 public void translate(int dx, int dy) {
 x = x + dx;
 y = y + dy;
 }
}

Copyright 2010 by Pearson Education
28

Client code, version 4
public class PointMain4 {
 public static void main(String[] args) {
 // create two Point objects
 Point p1 = new Point(5, 2);
 Point p2 = new Point(4, 3);

 // print each point
 System.out.println("p1: (" + p1.getX() + ", " + p1.getY() + ")");
 System.out.println("p2: (" + p2.getX() + ", " + p2.getY() + ")");

 // move p2 and then print it again
 p2.translate(2, 4);
 System.out.println("p2: (" + p2.getX() + ", " + p2.getY() + ")");
 }
}

OUTPUT:
p1 is (5, 2)
p2 is (4, 3)
p2 is (6, 7)

Copyright 2010 by Pearson Education
29

Benefits of encapsulation
  Provides abstraction between an object and its clients.

  Protects an object from unwanted access by clients.
  A bank app forbids a client to change an Account's balance.

  Allows you to change the class implementation.
  Point could be rewritten to use polar coordinates

(radius r, angle θ), but with the same methods.

  Allows you to constrain objects' state (invariants).
  Example: Only allow Points with non-negative coordinates.

