
Building Java Programs

Chapter 6
Lecture 6-2: Line-Based File Input

reading: 6.3 - 6.5

2

3

Hours question
� Given a file hours.txt with the following contents:

123 Cody 12.5 8.2 7.6 4.0
456 Rachel 4.2 11.6 6.3 2.5 12.0
789 Riley 16.0 12.0 8.0 20.0 7.5

� Consider the task of computing hours worked by each person:

Cody (ID#123) worked 32.3 hours (8.075 hours/day)
Rachel (ID#456) worked 36.6 hours (7.32 hours/day
Riley (ID#789) worked 63.5 hours (12.7 hours/day)

4

Hours answer (flawed)
// This solution does not work!
import java.io.*; // for File
import java.util.*; // for Scanner

public class HoursWorked {
public static void main(String[] args)

throws FileNotFoundException {
Scanner input = new Scanner(new File("hours.txt"));
while (input.hasNext()) {

// process one person
int id = input.nextInt();
String name = input.next();
double totalHours = 0.0;
int days = 0;
while (input.hasNextDouble()) {

totalHours += input.nextDouble();
days++;

}
System.out.println(name + " (ID#" + id +

") worked " + totalHours + " hours (" +
(totalHours / days) + " hours/day)");

}
}

}

5

Flawed output
Ross (ID#123) worked 488.3 hours (97.66 hours/day)
Exception in thread "main"
java.util.InputMismatchException

at java.util.Scanner.throwFor(Scanner.java:840)
at java.util.Scanner.next(Scanner.java:1461)
at java.util.Scanner.nextInt(Scanner.java:2091)
at HoursWorked.main(HoursBad.java:9)

� The inner while loop is grabbing the next person's ID.
� We want to process the tokens, but we also care about the line

breaks (they mark the end of a person's data).

� A better solution is a hybrid approach:
� First, break the overall input into lines.
� Then break each line into tokens.

6

Line-based Scanner
methods

Scanner input = new Scanner(new File("<filename>"));
while (input.hasNextLine()) {

String line = input.nextLine();
<process this line>;

}

Method Description
nextLine() returns next entire line of input (from cursor to

\n)

hasNextLine(
)

returns true if there are any more lines of
input to read (always true for console input)

7

Consuming lines of input
23 3.14 John Smith "Hello" world

45.2 19

� The Scanner reads the lines as follows:
23\t3.14 John Smith\t"Hello" world\n\t\t45.2 19\n
^

� String line = input.nextLine();
23\t3.14 John Smith\t"Hello" world\n\t\t45.2 19\n

^

� String line2 = input.nextLine();
23\t3.14 John Smith\t"Hello" world\n\t\t45.2 19\n

^

� Each \n character is consumed but not returned.

8

Scanners on Strings
� A Scanner can tokenize the contents of a String:

Scanner <name> = new Scanner(<String>);

� Example:
String text = "15 3.2 hello 9 27.5";
Scanner scan = new Scanner(text);

int num = scan.nextInt();
System.out.println(num); // 15

double num2 = scan.nextDouble();
System.out.println(num2); // 3.2

String word = scan.next();
System.out.println(word); // "hello"

9

Mixing lines and tokens

// Counts the words on each line of a file
Scanner input = new Scanner(new File("input.txt"));
while (input.hasNextLine()) {

String line = input.nextLine();
Scanner tokens = new Scanner(line);

// process the contents of this line
int count = 0;
while (tokens.hasNext()) {

String word = tokens.next();
count++;

}
System.out.println("Line has " + count + " words");

}

Input file input.txt: Output to
console:

The quick brown fox jumps over
the lazy dog.

Line has 6 words
Line has 3 words

10

Hours question
� Given a file hours.txt with the following contents:

123 Cody 12.5 8.2 7.6 4.0
456 Rachel 4.2 11.6 6.3 2.5 12.0
789 Riley 16.0 12.0 8.0 20.0 7.5

� Consider the task of computing hours worked by each person:

Cody (ID#123) worked 32.3 hours (8.075 hours/day)
Rachel (ID#456) worked 36.6 hours (7.32 hours/day
Riley (ID#789) worked 63.5 hours (12.7 hours/day)

11

Hours answer, corrected
// Processes an employee input file and outputs each employee's hours.
import java.io.*; // for File
import java.util.*; // for Scanner

public class Hours {
public static void main(String[] args) throws FileNotFoundException {

Scanner input = new Scanner(new File("hours.txt"));
while (input.hasNextLine()) {

String line = input.nextLine();
processEmployee(line);

}
}

public static void processEmployee(String line) {
Scanner lineScan = new Scanner(line);
int id = lineScan.nextInt(); // e.g. 456
String name = lineScan.next(); // e.g. ”Erika"
double sum = 0.0;
int count = 0;
while (lineScan.hasNextDouble()) {

sum = sum + lineScan.nextDouble();
count++;

}

double average = sum / count;
System.out.println(name + " (ID#" + id + ") worked " +

sum + " hours (" + average + " hours/day)");
}

}

12

File output
reading: 6.4 - 6.5

13

Output to files
� PrintStream: An object in the java.io package that lets

you print output to a destination such as a file.

� Any methods you have used on System.out
(such as print, println) will work on a PrintStream.

� Syntax:
PrintStream <name> = new PrintStream(new File("<file>"));

Example:
PrintStream output = new PrintStream(new File("out.txt"));
output.println("Hello, file!");
output.println("This is a second line of output.");

14

Details about PrintStream
PrintStream <name> = new PrintStream(new File("<file>"));

� If the given file does not exist, it is created.
� If the given file already exists, it is overwritten.

� The output you print appears in a file, not on the console.
You will have to open the file with an editor to see it.

� Do not open the same file for both reading (Scanner)
and writing (PrintStream) at the same time.
� You will overwrite your input file with an empty file (0 bytes).

15

System.out and PrintStream
� The console output object, System.out, is a
PrintStream.

PrintStream out1 = System.out;
PrintStream out2 = new PrintStream(new File("data.txt"));
out1.println("Hello, console!"); // goes to console
out2.println("Hello, file!"); // goes to file

� A reference to it can be stored in a PrintStream variable.
� Printing to that variable causes console output to appear.

� You can pass System.out to a method as a PrintStream.
� Allows a method to send output to the console or a file.

16

PrintStream question
� Modify our previous Hours program to use a PrintStream

to send its output to the file hours_out.txt.

� The program will produce no console output.
� But the file hours_out.txtwill be created with the text:

Ross (ID#123) worked 32.3 hours (8.075 hours/day)
Erika (ID#456) worked 36.6 hours (7.32 hours/day
Alex (ID#789) worked 63.5 hours (12.7 hours/day)

17

PrintStream answer
// Processes an employee input file and outputs each employee's hours.
import java.io.*; // for File
import java.util.*; // for Scanner

public class Hours2 {
public static void main(String[] args) throws FileNotFoundException {

Scanner input = new Scanner(new File("hours.txt"));
PrintStream out = new PrintStream(new File("hours_out.txt"));
while (input.hasNextLine()) {

String line = input.nextLine();
processEmployee(out, line);

}
}

public static void processEmployee(PrintStream out, String line) {
Scanner lineScan = new Scanner(line);
int id = lineScan.nextInt(); // e.g. 456
String name = lineScan.next(); // e.g. ”Erika"
double sum = 0.0;
int count = 0;
while (lineScan.hasNextDouble()) {

sum = sum + lineScan.nextDouble();
count++;

}

double average = sum / count;
out.println(name + " (ID#" + id + ") worked " +

sum + " hours (" + average + " hours/day)");
}

}

18

Prompting for a file name
� We can ask the user to tell us the file to read.

� The filename might have spaces; use nextLine(), not next()

// prompt for input file name
Scanner console = new Scanner(System.in);
System.out.print("Type a file name to use: ");
String filename = console.nextLine();
Scanner input = new Scanner(new File(filename));

� Files have an exists method to test for file-not-found:
File file = new File("hours.txt");
if (!file.exists()) {

// try a second input file as a backup
System.out.print("hours file not found!");
file = new File("hours2.txt");

}

19

File Scanner Question
� Write a program called Spammer.java that asks the user

for an email domain and searches a file called
address_book.txt. If an email with the domain name is
found, the user is prompted whether the contact should
be added to the "spam list" (User input in bold)

Email domain to spam? @gmail.com
Would you like to spam therealsherlock@gmail.com? yes

� The program should output the contacts that the user
selected to a file named spam_list.txt

Schmerlock Schmolmes <therealsherlock@gmail.com>

