Building Java Programs

Chapter 4 Lecture 4-1: Scanner; if/else

reading: 3.3 - 3.4, 4.1, 4.5

Interactive Programs with Scanner

reading: 3.3 - 3.4

Interactive programs

interactive program: Reads input from the console.

- While the program runs, it asks the user to type input.
- The input typed by the user is stored in variables in the code.
- Can be tricky; users are unpredictable and misbehave.
- But interactive programs have more interesting behavior.

Exercise

- In physics, the *displacement* of a moving body represents its change in position over time while accelerating.
 - Given initial velocity v₀ in m/s, acceleration a in m/s², and elapsed time t in s, the displacement of the body is:
 - Displacement = $v_0 t + \frac{1}{2} a t^2$

 Write a method displacement that accepts v₀, a, and t and computes and returns the change in position.

• example: displacement(3.0, 4.0, 5.0) returns 65.0

Scanner

- Scanner: An object that can read input from many sources.
 - Communicates with System.in
 - Can also read from files (Ch. 6), web sites, databases, ...
- The Scanner class is found in the java.util package. import java.util.*; // so you can use Scanner
- Constructing a Scanner object to read console input:

Scanner name = new Scanner(System.in);

• Example:

Scanner console = new Scanner(System.in);

Scanner methods

Method	Description	
nextInt()	reads an int from the user and returns it	
nextDouble()	reads a double from the user	
next()	reads a one-word String from the user	
nextLine()	reads a one-line String from the user	

- Each method waits until the user presses Enter.
- The value typed by the user is returned.

System.out.print("How old are you? "); // prompt
int age = console.nextInt();
System.out.println("You typed " + age);

• **prompt**: A message telling the user what input to type.

Scanner example

```
import java.util.*; // so that I can use Scanner
```

```
public class UserInputExample {
     public static void main(String[] args) {
         Scanner console = new Scanner(System.in);
      → System.out.print("How old are you? ");
                                                              29
                                                        aq
      int age = console.nextInt()
                                                         e
                                                              36
                                                      year
      \rightarrow int years = 65 / age;
         System.out.pri/tln(years + " years until retirement!")
 }
Console (user input/underlined):
 How old are you? 29 -
 36 years until retirement!
```

Input tokens

• token: A unit of user input, as read by the Scanner.

- Tokens are separated by *whitespace* (spaces, tabs, new lines).
- How many tokens appear on the following line of input?
 - 23 John Smith 42.0 "Hello world" \$2.50 " 19"

When a token is not the type you ask for, it crashes.

```
System.out.print("What is your age? ");
int age = console.nextInt();
```

Output:

```
What is your age? <u>Timmy</u>
java.util.InputMismatchException
at java.util.Scanner.next(Unknown Source)
at java.util.Scanner.nextInt(Unknown Source)
...
```

Scanner example 2

```
import java.util.*; // so that I can use Scanner
```

```
public class ScannerMultiply {
    public static void main(String[] args) {
        Scanner console = new Scanner(System.in);
        System.out.print("Please type two numbers: ");
        int num1 = console.nextInt();
        int num2 = console.nextInt();
        int product = num1 * num2;
        System.out.println("The product is " + product);
    }
}
```

Output (user input underlined):

```
Please type two numbers: \underline{8 \ 6}
The product is 48
```

• The Scanner can read multiple values from one line.

Scanners as parameters

• If many methods need to read input, declare a Scanner in main and pass it to the other methods as a parameter.

```
public static void main(String[] args) {
    Scanner console = new Scanner(System.in);
    int sum = readSum3(console);
    System.out.println("The sum is " + sum);
}
```

```
// Prompts for 3 numbers and returns their sum.
public static int readSum3 (Scanner console) {
    System.out.print("Type 3 numbers: ");
    int num1 = console.nextInt();
    int num2 = console.nextInt();
    int num3 = console.nextInt();
    return num1 + num2 + num3;
```

The if/else statement

reading: 4.1, 4.5

The if statement

Executes a block of statements only if a test is true

```
if (test) {
    statement;
    statement;
}
```


• Example:

}

```
double gpa = console.nextDouble();
```

if (gpa >= 2.0) {

```
System.out.println("Application accepted.");
```

Relational expressions

• if statements and for loops both use logical tests.

for (int i = 1; i <= 10; i++) { ...
if (i <= 10) { ...</pre>

• These are boolean expressions, seen in Ch. 5.

• Tests use *relational operators*:

Operator	Meaning	Example	Value
==	equals	1 + 1 == 2	true
!=	does not equal	3.2 != 2.5	true
<	less than	10 < 5	false
>	greater than	10 > 5	true
<=	less than or equal to	126 <= 100	false
>=	greater than or equal to	5.0 >= 5.0	true

The if/else statement

Executes one block if a test is true, another if false

```
if (test) {
    statement(s);
} else {
    statement(s);
}
```


• Example:

```
double gpa = console.nextDouble();
```

if (gpa >= 2.0) {

System.out.println("Welcome to Mars University!");

} else {

System.out.println("Application denied.");

Misuse of if

• What's wrong with the following code?

```
Scanner console = new Scanner(System.in);
System.out.print("What percentage did you earn? ");
int percent = console.nextInt();
if (percent >= 90) {
    System.out.println("You got an A!");
if (percent >= 80) {
    System.out.println("You got a B!");
if (percent \geq 70) {
    System.out.println("You got a C!");
if (percent \geq 60) {
    System.out.println("You got a D!");
if (percent < 60) {
    System.out.println("You got an F!");
```

is test1 true?

statementl

is test2 true?

statement2

is test3 true?

statement3

yes

yes

yes

no

no

Nested if/else

Chooses between outcomes using many tests

```
if (test) {
    statement(s);
} else if (test) {
    statement(s);
} else {
    statement(s);
}
```


• Example:

```
if (x > 0) {
    System.out.println("Positive");
} else if (x < 0) {
    System.out.println("Negative");
} else {
    System.out.println("Zero");
}</pre>
```

Nested if/else if

- If it ends with else, exactly one path must be taken.
- If it ends with if, the code might not execute any path.

```
if (test) {
    statement(s);
} else if (test) {
    statement(s);
} else if (test) {
    statement(s);
}
```


• Example:

```
if (place == 1) {
    System.out.println("Gold medal!");
} else if (place == 2) {
    System.out.println("Silver medal!");
} else if (place == 3) {
    System.out.println("Bronze medal.");
}
```

Nested if structures

```
exactly 1 path (mutually exclusive)
                                     • 0 or 1 path (mutually exclusive)
if (test) {
                                        if (test) {
    statement(s);
                                            statement(s);
} else if (test) {
                                        } else if (test) {
    statement(s);
                                            statement(s);
                                        } else if (test) {
} else {
    statement(s);
                                            statement(s);
}
                                        }
```

• 0, 1, or many paths (independent tests; not exclusive)

```
if (test) {
    statement(s);
}
if (test) {
    statement(s);
}
if (test) {
    statement(s);
}
```

Which nested if/else?

• (1) if/if/if (2) nested if/else (3) nested if/else if

- Whether a user is lower, middle, or upper-class based on income.
 - (2) nested if / else if / else
- Whether you made the dean's list (GPA ≥ 3.8) or honor roll (3.5-3.8).
 - (3) nested if / else if
- Whether a number is divisible by 2, 3, and/or 5.
 - (1) sequential if / if / if
- Computing a grade of A, B, C, D, or F based on a percentage.
 - (2) nested if / else if / else if / else if / else