
Building Java Programs

Chapter 1
Lecture 1-2: Static Methods

reading: 1.4 - 1.5

2

3

Recall: structure, syntax
class: a program

statement: a command to be executed

method: a named group
of statements

4

Comments
  comment: A note written in source code by the

programmer to describe or clarify the code.
  Comments are not executed when your program runs.

  Syntax:
 // comment text, on one line

 or,
/* comment text; may span multiple lines */

  Examples:
// This is a one-line comment.

/* This is a very long
 multi-line comment. */

5

Where to place comments
  At the top of each file (a "comment header") to describe

the program.

 /* Suzy Student, CS 101, Fall 2019
 This program prints lyrics about Fraggle Rock. */

  At the start of every method (seen later) to describe what
the method does.

 // Print the chorus

  To explain complex pieces of code

 // Compute the Mercator map projection

6

Comments example
/* Suzy Student, CS 101, Fall 2019
 This program prints lyrics about Fraggle Rock. */

public class FraggleRock {
 public static void main(String[] args) {
 // first verse
 System.out.println("Dance your cares away");
 System.out.println("Worry’s for another day");
 System.out.println();

 // second verse
 System.out.println("Let the music play");
 System.out.println("Down at Fraggle Rock");
 }
}

7

Why comments?
  Helpful for understanding larger, more complex

programs.

  Helps other programmers understand your code.
  The “other” programmer could be the future you.

Static methods

reading: 1.4

9

Algorithms
  algorithm: A list of steps for solving a problem.

  Example algorithm: "Bake sugar cookies"
  Mix the dry ingredients.
  Cream the butter and sugar.
  Beat in the eggs.
  Stir in the dry ingredients.
  Set the oven temperature.
  Set the timer for 10 minutes.
  Place the cookies into the oven.
  Allow the cookies to bake.
  Mix ingredients for frosting.
  ...

10

Problems with algorithms
  lack of structure: Many steps; tough to follow.

  redundancy: Consider making a double batch...
  Mix the dry ingredients.
  Cream the butter and sugar.
  Beat in the eggs.
  Stir in the dry ingredients.
  Set the oven temperature.
  Set the timer for 10 minutes.
  Place the first batch of cookies into the oven.
  Allow the cookies to bake.
  Set the timer for 10 minutes.
  Place the second batch of cookies into the oven.
  Allow the cookies to bake.
  Mix ingredients for frosting.
  ...

11

Structured algorithms
  structured algorithm: Split into coherent tasks.

1 Make the batter.
  Mix the dry ingredients.
  Cream the butter and sugar.
  Beat in the eggs.
  Stir in the dry ingredients.

2 Bake the cookies.
  Set the oven temperature.
  Set the timer for 10 minutes.
  Place the cookies into the oven.
  Allow the cookies to bake.

3 Decorate the cookies.
  Mix the ingredients for the frosting.
  Spread frosting and sprinkles onto the cookies.

...

12

Removing redundancy
  A well-structured algorithm can describe repeated tasks

with less redundancy.

1 Make the batter.
  Mix the dry ingredients.
  ...

2a Bake the cookies (first batch).
  Set the oven temperature.
  Set the timer for 10 minutes.
  ...

2b Bake the cookies (second batch).
  Repeat Step 2a

3 Decorate the cookies.
  ...

13

A program with redundancy
// This program displays a delicious recipe for baking cookies.
public class BakeCookies {
 public static void main(String[] args) {
 System.out.println("Mix the dry ingredients.");
 System.out.println("Cream the butter and sugar.");
 System.out.println("Beat in the eggs.");
 System.out.println("Stir in the dry ingredients.");
 System.out.println("Set the oven temperature.");
 System.out.println("Set the timer for 10 minutes.");
 System.out.println("Place a batch of cookies into the oven.");
 System.out.println("Allow the cookies to bake.");
 System.out.println("Set the oven temperature.");
 System.out.println("Set the timer for 10 minutes.");
 System.out.println("Place a batch of cookies into the oven.");
 System.out.println("Allow the cookies to bake.");
 System.out.println("Mix ingredients for frosting.");
 System.out.println("Spread frosting and sprinkles.");
 }
}

14

Static methods
  static method: A named group of statements.

  denotes the structure of a program
  eliminates redundancy by code reuse

  procedural decomposition:
dividing a problem into methods

  Writing a static method is like
adding a new command to Java.

class
method A

  statement
  statement
  statement

method B
  statement
  statement

method C
  statement
  statement
  statement

15

Using static methods
1. Design (think about) the algorithm.

  Look at the structure, and which commands are repeated.
  Decide what are the important overall tasks.

2. Declare (write down) the methods.
  Arrange statements into groups and give each group a name.

3. Call (run) the methods.
  The program's main method executes the other methods to

perform the overall task.

16

Design of an algorithm
// This program displays a delicious recipe for baking cookies.
public class BakeCookies2 {
 public static void main(String[] args) {
 // Step 1: Make the cake batter.
 System.out.println("Mix the dry ingredients.");
 System.out.println("Cream the butter and sugar.");
 System.out.println("Beat in the eggs.");
 System.out.println("Stir in the dry ingredients.");

 // Step 2a: Bake cookies (first batch).
 System.out.println("Set the oven temperature.");
 System.out.println("Set the timer for 10 minutes.");
 System.out.println("Place a batch of cookies into the oven.");
 System.out.println("Allow the cookies to bake.");

 // Step 2b: Bake cookies (second batch).
 System.out.println("Set the oven temperature.");
 System.out.println("Set the timer for 10 minutes.");
 System.out.println("Place a batch of cookies into the oven.");
 System.out.println("Allow the cookies to bake.");

 // Step 3: Decorate the cookies.
 System.out.println("Mix ingredients for frosting.");
 System.out.println("Spread frosting and sprinkles.");
 }
}

17

Gives your method a name so it can be executed

  Syntax:

public static void name() {
 statement;
 statement;
 ...
 statement;
}

  Example:
public static void printWarning() {
 System.out.println("This product causes cancer");
 System.out.println("in lab rats and humans.");
}

Declaring a method

18

Calling a method
Executes the method's code

  Syntax:

 name();

  You can call the same method many times if you like.

  Example:

 printWarning();

  Output:

 This product causes cancer
 in lab rats and humans.

19

Program with static method
public class FreshPrince {
 public static void main(String[] args) {
 rap(); // Calling (running) the rap method
 System.out.println();
 rap(); // Calling the rap method again
 }

 // This method prints the lyrics to my favorite song.
 public static void rap() {
 System.out.println("Now this is the story all about how");
 System.out.println("My life got flipped turned upside-down");
 }
}

Output:
Now this is the story all about how
My life got flipped turned upside-down

Now this is the story all about how
My life got flipped turned upside-down

20

Final cookie program
// This program displays a delicious recipe for baking cookies.
public class BakeCookies3 {
 public static void main(String[] args) {
 makeBatter();
 bake(); // 1st batch
 bake(); // 2nd batch
 decorate();
 }

 // Step 1: Make the cake batter.
 public static void makeBatter() {
 System.out.println("Mix the dry ingredients.");
 System.out.println("Cream the butter and sugar.");
 System.out.println("Beat in the eggs.");
 System.out.println("Stir in the dry ingredients.");
 }

 // Step 2: Bake a batch of cookies.
 public static void bake() {
 System.out.println("Set the oven temperature.");
 System.out.println("Set the timer for 10 minutes.");
 System.out.println("Place a batch of cookies into the oven.");
 System.out.println("Allow the cookies to bake.");
 }

 // Step 3: Decorate the cookies.
 public static void decorate() {
 System.out.println("Mix ingredients for frosting.");
 System.out.println("Spread frosting and sprinkles.");
 }
}

21

 Makes code easier to read by capturing the
structure of the program
  main should be a good summary of the program

public static void main(String[] args) {

}

Note: Longer code doesn’t
necessarily mean worse code

Summary: Why methods?

public static void main(String[] args) {

}

public static ... (...) {

}

public static ... (...) {

}

22

 Eliminate redundancy
public static void main(String[] args) {

}

Summary: Why methods?

public static void main(String[] args) {

}

public static ... (...) {

}

23

Methods calling methods
public class MethodsExample {
 public static void main(String[] args) {
 message1();
 message2();
 System.out.println("Done with main.");
 }

 public static void message1() {
 System.out.println("This is message1.");
 }

 public static void message2() {
 System.out.println("This is message2.");
 message1();
 System.out.println("Done with message2.");
 }
}

  Output:
This is message1.
This is message2.
This is message1.
Done with message2.
Done with main.

24

  When a method is called, the program's execution...
  "jumps" into that method, executing its statements, then
  "jumps" back to the point where the method was called.

public class MethodsExample {

 public static void main(String[] args) {

 message1();

 message2();

 System.out.println("Done with main.");

 }

 ...

}

public static void message1() {
 System.out.println("This is message1.");
}

public static void message2() {
 System.out.println("This is message2.");
 message1();

 System.out.println("Done with
message2.");
}
public static void message1() {
 System.out.println("This is message1.");
}

Control flow

25

When to use methods
  Place statements into a static method if:

  The statements are related structurally, and/or
  The statements are repeated.

  You should not create static methods for:
  An individual println statement that appears once in a

program.
  Only blank lines.
  Unrelated or weakly related statements.

(Consider splitting them into two smaller methods.)

Drawing complex figures
with static methods

reading: 1.5
(Ch. 1 Case Study: DrawFigures)

27

Static methods question
  Write a program to print these figures using methods.

 / \
/ \
\ /
 ______/

\ /
 ______/
+--------+

 / \
/ \
| STOP |
\ /
 ______/

 / \
/ \
+--------+

28

Development strategy

 / \
/ \
\ /
 ______/

\ /
 ______/
+--------+

 / \
/ \
| STOP |
\ /
 ______/

 / \
/ \
+--------+

First version (unstructured):

  Create an empty program and main method.

  Copy the expected output into it, surrounding
each line with System.out.println syntax.

  Run it to verify the output.

29

Program version 1
public class Figures1 {
 public static void main(String[] args) {
 System.out.println(" ______");
 System.out.println(" / \\");
 System.out.println("/ \\");
 System.out.println("\\ /");
 System.out.println(" ______/");
 System.out.println();
 System.out.println("\\ /");
 System.out.println(" ______/");
 System.out.println("+--------+");
 System.out.println();
 System.out.println(" ______");
 System.out.println(" / \\");
 System.out.println("/ \\");
 System.out.println("| STOP |");
 System.out.println("\\ /");
 System.out.println(" ______/");
 System.out.println();
 System.out.println(" ______");
 System.out.println(" / \\");
 System.out.println("/ \\");
 System.out.println("+--------+");
 }
}

30

Development strategy 2

 / \
/ \
\ /
 ______/

\ /
 ______/
+--------+

 / \
/ \
| STOP |
\ /
 ______/

 / \
/ \
+--------+

Second version (structured, with redundancy):

  Identify the structure of the output.

  Divide the main method into static methods
based on this structure.

31

Output structure

The structure of the output:
  initial "egg" figure
  second "teacup" figure
  third "stop sign" figure
  fourth "hat" figure

This structure can be represented by methods:
  egg

  teaCup

  stopSign

  hat

 / \
/ \
\ /
 ______/

\ /
 ______/
+--------+

 / \
/ \
| STOP |
\ /
 ______/

 / \
/ \
+--------+

32

Program version 2
public class Figures2 {
 public static void main(String[] args) {
 egg();
 teaCup();
 stopSign();
 hat();
 }

 public static void egg() {
 System.out.println(" ______");
 System.out.println(" / \\");
 System.out.println("/ \\");
 System.out.println("\\ /");
 System.out.println(" ______/");
 System.out.println();
 }

 public static void teaCup() {
 System.out.println("\\ /");
 System.out.println(" ______/");
 System.out.println("+--------+");
 System.out.println();
 }
 ...

33

Program version 2, cont'd.
 ...

 public static void stopSign() {
 System.out.println(" ______");
 System.out.println(" / \\");
 System.out.println("/ \\");
 System.out.println("| STOP |");
 System.out.println("\\ /");
 System.out.println(" ______/");
 System.out.println();
 }

 public static void hat() {
 System.out.println(" ______");
 System.out.println(" / \\");
 System.out.println("/ \\");
 System.out.println("+--------+");
 }
}

34

Development strategy 3

 / \
/ \
\ /
 ______/

\ /
 ______/
+--------+

 / \
/ \
| STOP |
\ /
 ______/

 / \
/ \
+--------+

Third version (structured, without redundancy):

  Identify redundancy in the output, and create
methods to eliminate as much as possible.

  Add comments to the program.

35

Output redundancy

The redundancy in the output:

  egg top: reused on stop sign, hat
  egg bottom: reused on teacup, stop sign
  divider line: used on teacup, hat

This redundancy can be fixed by methods:
  eggTop

  eggBottom

  line

 / \
/ \
\ /
 ______/

\ /
 ______/
+--------+

 / \
/ \
| STOP |
\ /
 ______/

 / \
/ \
+--------+

36

Program version 3
// Suzy Student, CSE 138, Spring 2094
// Prints several figures, with methods for structure and redundancy.
public class Figures3 {
 public static void main(String[] args) {
 egg();
 teaCup();
 stopSign();
 hat();
 }
 // Draws the top half of an an egg figure.
 public static void eggTop() {
 System.out.println(" ______");
 System.out.println(" / \\");
 System.out.println("/ \\");
 }
 // Draws the bottom half of an egg figure.
 public static void eggBottom() {
 System.out.println("\\ /");
 System.out.println(" ______/");
 }
 // Draws a complete egg figure.
 public static void egg() {
 eggTop();
 eggBottom();
 System.out.println();
 }
 ...

37

Program version 3, cont'd.
 ...
 // Draws a teacup figure.
 public static void teaCup() {
 eggBottom();
 line();
 System.out.println();
 }
 // Draws a stop sign figure.
 public static void stopSign() {
 eggTop();
 System.out.println("| STOP |");
 eggBottom();
 System.out.println();
 }
 // Draws a figure that looks sort of like a hat.
 public static void hat() {
 eggTop();
 line();
 }
 // Draws a line of dashes.
 public static void line() {
 System.out.println("+--------+");
 }
}

38

A word about style
  Structure your code properly

  Eliminate redundant code

  Use spaces judiciously and consistently

  Indent properly

  Follow the naming conventions

  Use comments to describe behavior of your program and
each method

39

Why style?
  Programmers build on top of other’s code all the

time.
  You shouldn’t waste time deciphering what a method does.

  Often times, that other person is you

  You should spend time on thinking or coding. You
should NOT be wasting time looking for that
missing closing brace.

40

Why style?

Taylor Swift has a song about it

