
Copyright 2010 by Pearson Education

Building Java Programs

Chapter 10

Lecture 21: ArrayList

reading: 10.1

Copyright 2010 by Pearson Education

End of CSE142:
Where to go from here

Copyright 2010 by Pearson Education
3

Courses at UW

 CSE 143 – Computer Programming II

 More object-oriented programming

 Basic data structures (Stacks, Queues, Trees,
etc.)

 Recursive Algorithms

 CSE 154 – Web programming

 HTML, CSS, Javascript, PHP, MySQL

 CSE 373 – Data Structures and Algorithms

 After CSE 143

 More advanced data structures and algorithms

Copyright 2010 by Pearson Education
4

Some Programs at UW
 CSE (Computer Science and Engineering)

 List of research areas: https://www.cs.washington.edu/research/

 iSchool (Information School)

 “Information schools are interested in the relationship between
information, technology, and people.”

 https://ischool.uw.edu/about

 HCDE (Human Centered Design and Engineering)

 “Study Human Computer Interaction (HCI), User Experience
(UX) Research and Design, Interaction Design and Prototyping,
and Sociotechnical Systems”

 http://www.hcde.washington.edu/

 Engineering (Mechanical, Electrical, etc.)

 Sciences (Physics, Biology, etc.)

 Math (Statistics, Discrete Math, etc.)

https://www.cs.washington.edu/research/
https://ischool.uw.edu/about
http://www.hcde.washington.edu/

Copyright 2010 by Pearson Education
5

Online Tutorials

 Web programming

 w3schools: http://www.w3schools.com/

 Try HTML, javascript, css, jQuery

 Code Academy
 https://www.codecademy.com/learn

 Try Python or Ruby in “Language Skills”

 Khan Academy
 https://www.khanacademy.org/computing/computer-programming

 Try “Intro to SQL”

 Many more…

http://www.w3schools.com/
https://www.codecademy.com/learn
https://www.khanacademy.org/computing/computer-programming

Copyright 2010 by Pearson Education
6

Words exercise
 Write code to read a file and display its words in reverse

order.

 A solution that uses an array:

String[] allWords = new String[1000];

int wordCount = 0;

Scanner input = new Scanner(new File("words.txt"));

while (input.hasNext()) {

String word = input.next();

allWords[wordCount] = word;

wordCount++;

}

for(int i = allWords.length - 1; i >= 0; i++) {

System.out.print(allwords[i] + " ");
}

 What's wrong with this?

Copyright 2010 by Pearson Education
7

Recall: Arrays (7.1)
 array: object that stores many values of the same type.

 element: One value in an array.

 index: 0-based integer to access an element from an
array.

 length: Number of elements in the array.

index 0 1 2 3 4 5 6 7 8 9

value 12 49 -2 26 5 17 -6 84 72 3

element 0 element 4 element 9

length = 10

Copyright 2010 by Pearson Education
8

Array Limitations
 Fixed-size

 Adding or removing from middle is hard

 Not much built-in functionality (need Arrays class)

Copyright 2010 by Pearson Education
9

List Abstraction
 Like an array that resizes to fit its contents.

 When a list is created, it is initially empty.

[]

 Use add methods to add to different locations in list

[hello, ABC, goodbye, okay]

 The list object keeps track of the element values that have
been added to it, their order, indexes, and its total size.

 You can add, remove, get, set, ... any index at any time.

Copyright 2010 by Pearson Education
10

Collections and lists
 collection: an object that stores data ("elements")

import java.util.*; // to use Java's collections

 list: a collection of elements with 0-based indexes

 elements can be added to the front, back, or elsewhere

 a list has a size (number of elements that have been added)

 in Java, a list can be represented as an ArrayList object

Copyright 2010 by Pearson Education
11

Type parameters (generics)
ArrayList<Type> name = new ArrayList<Type>();

 When constructing an ArrayList, you must specify the
type of its elements in < >

 This is called a type parameter ; ArrayList is a generic class.

 Allows the ArrayList class to store lists of different types.

 Arrays use a similar idea with Type[]

ArrayList<String> names = new ArrayList<String>();

names.add("Marty Stepp");

names.add("Stuart Reges");

Copyright 2010 by Pearson Education
12

ArrayList methods (10.1)*
add(value) appends value at end of list

add(index,
value)

inserts given value just before the given
index, shifting subsequent values to the
right

clear() removes all elements of the list

indexOf(value) returns first index where given value is
found in list (-1 if not found)

get(index) returns the value at given index

remove(index) removes/returns value at given index,
shifting subsequent values to the left

set(index,
value)

replaces value at given index with given
value

size() returns the number of elements in list

toString() returns a string representation of the list
such as "[3, 42, -7, 15]"

Copyright 2010 by Pearson Education
13

ArrayList vs. array

• construction
String[] names = new String[5];

ArrayList<String> list = new ArrayList<String>();

• storing a value
names[0] = "Jessica";

list.add("Jessica");

• retrieving a value
String s = names[0];

String s = list.get(0);

Copyright 2010 by Pearson Education
14

ArrayList vs. array
String[] names = new String[5]; // construct

names[0] = "Jessica"; // store

String s = names[0]; // retrieve

for (int i = 0; i < names.length; i++) {

if (names[i].startsWith("B")) { ... }

} // iterate

ArrayList<String> list = new ArrayList<String>();

list.add("Jessica"); // store

String s = list.get(0); // retrieve

for (int i = 0; i < list.size(); i++) {

if (list.get(i).startsWith("B")) { ... }

} // iterate

Copyright 2010 by Pearson Education
15

ArrayList as param/return

public static void name(ArrayList<Type> name) {// param

public static ArrayList<Type> name(params) //

return

 Example:

// Returns count of plural words in the given list.

public static int countPlural(ArrayList<String> list) {

int count = 0;

for (int i = 0; i < list.size(); i++) {

String str = list.get(i);

if (str.endsWith("s")) {

count++;

}

}

return count;

}

Copyright 2010 by Pearson Education
16

Words exercise, revisited
 Write a program that reads a file and

displays the words of that file as a list.

 Then display the words in reverse order.

 Then display them with all plurals (ending in "s") capitalized.

 Then display them with all plural words removed.

Copyright 2010 by Pearson Education
17

Exercise solution (partial)
ArrayList<String> allWords = new ArrayList<String>();

Scanner input = new Scanner(new File("words.txt"));

while (input.hasNext()) {

String word = input.next();

allWords.add(word);

}

// display in reverse order

for (int i = allWords.size() - 1; i >= 0; i--) {

System.out.println(allWords.get(i));

}

// remove all plural words

for (int i = 0; i < allWords.size(); i++) {

String word = allWords.get(i);

if (word.endsWith("s")) {

allWords.remove(i);

i--;

}

}

Copyright 2010 by Pearson Education
18

ArrayList of primitives?

 The type you specify when creating an ArrayList must

be an object type; it cannot be a primitive type.

// illegal -- int cannot be a type parameter

ArrayList<int> list = new ArrayList<int>();

 But we can still use ArrayList with primitive types by

using special classes called wrapper classes in their place.

// creates a list of ints

ArrayList<Integer> list = new ArrayList<Integer>();

Copyright 2010 by Pearson Education
19

Wrapper classes

 A wrapper is an object whose sole purpose is to hold a primitive value.

 Once you construct the list, use it with primitives as normal:

ArrayList<Double> grades = new ArrayList<Double>();

grades.add(3.2);

grades.add(2.7);

...

double myGrade = grades.get(0);

Primitive
Type

Wrapper
Type

int Integer

double Double

char Character

boolean Boolean

