Building Java Programs

Chapter 9
Lecture 19: Inheritance, Polymorphism;

reading: 9.2

g

~ Copyright 2008 by Pearson Education

- P " o A \ 2 \ & 7F

Jean Jennings, Marlyn Wescoff, and Ruth Lichterman
1946

http://fortune.com/2014/09/18/walter-isaacson-the-women-of-eniac/

Copyright 2008 by Pearson Education

http://fortune.com/2014/09/18/walter-isaacson-the-women-of-eniac/

e

Women in Computer Science

Percentage of Bachelor's degrees conferred to women in the U.S.A., by major (1970-2012)

Widening Gap

The percentage of female college freshmen who
list computer science as a probable majoris 0.3
parcant, down from 4.2 parcent in 1982.

! B2 a9 o7
Source: ULC.LA Higher
Education Aassarch inshituwde THE NEW TORE TIMES

http://www.nytimes.com/2008/11/16/business/16digi.html

90%
Health Professions
80% PR Education
70% Foreign Languages
English
Communications
and Journalism
60% ,ﬁ..rt and Performance
Biology
Agriculture
50% Social Sciences and History
Business
M —— Math and Statistics
40% Physical Sciences
30%
20%
Engineering
10%

1970 1980 1990 2000 2010

Data source: nces.ed gov/programs/digest/2013menu_tables asp
Author: Randy Olson (randalolson.com / @randal_olson)
Note: Some majors are missing because the historical data is not available for them

http://www.randalolson.com/2014/06/14/percentage-of-bachelors-
degrees-conferred-to-women-by-major-1970-2012/

]
—_——

~ " Copyright 2008 by Pearson Education

See also:

http://www.npr.org/sections/money/2014/10/21/357629

765/when-women-stopped-coding/

http://www.polygon.com/features/2013/12/2/5143856/n

o-girls-allowed

http://www.nytimes.com/2008/11/16/business/16digi.html
http://www.randalolson.com/2014/06/14/percentage-of-bachelors-degrees-conferred-to-women-by-major-1970-2012/
http://www.npr.org/sections/money/2014/10/21/357629765/when-women-stopped-coding/
http://www.polygon.com/features/2013/12/2/5143856/no-girls-allowed

Inheritance /
Polymorphism

reading: 9.2

S —

The software crisis

» software engineering: The practice of developing,
designing, documenting, testing large computer
programs.

e Large-scale projects face many issues
o programmers working together
» getting code finished on time
» avoiding redundant code
» finding and fixing bugs
* maintaining, reusing existing code

*» code reuse: The practice of writing program code once
and using it in many contexts.

0 ype——

~ Copyright 2008 by Pearson Education

Law firm employee analogy

e common rules: hours, vacation, benefits, regulations ...
» all employees attend a common orientation to learn general

company rules

» each employee receives a 20-page manual of common rules

e each subdivision also has specific rules:

» employee receives a smaller (1-3 page) manual of these rules
» smaller manual adds some new rules and also changes some

rules from the large manual

" Copyright 2008 by Pearson Education

Employee

20-page manual

iy

Lawyer
Z2-page manual

Secretary
1-page manual

Marketer
3-page manual

T

LegalSecretary
1-page manual

———

Separating behavior

* Why not just have a 22 page Lawyer manual, a 21-page
Secretary manual, a 23-page Marketer manual, etc.?

g

* Some advantages of the separate manuals:
 maintenance: Only one update if a common rule changes.
» locality: Quick discovery of all rules specific to lawyers.

* Some key ideas from this example:

» General rules are useful (the 20-page manual).
» Specific rules that may override general ones are also useful.

Copyright 2008 by Pearson Education

//,4

—

Is-a relationships, hierarchies

* is-a relationship: A hierarchical connection where one
category can be treated as a specialized version of
another.

» every marketer is an employee
» every legal secretary is a secretary

* inheritance hierarchy: A set of classes connected by is-
a relationships that can share common code.

‘b\.

Copyright 2008 by Pearson Education

g

Employee regulations

» Consider the following employee regulations:
» Employees work 40 hours / week.

« Employees make $40,000 per year, except legal secretaries who
make $5,000 extra per year ($45,000 total), and marketers who
make $10,000 extra per year ($50,000 total).

» Employees have 2 weeks of paid vacation leave per year, except
lawyers who get an extra week (a total of 3).

» Employees should use a yellow form to apply for leave, except for
lawyers who use a pink form.

* Each type of employee has some unique behavior:
e Lawyers know how to sue.
» Marketers know how to advertise.
» Secretaries know how to take dictation.
» Legal secretaries know how to prepare legal documents.

Copyright 2008 by Pearson Education

An Employee class

// A class to represent employees in general (20-page manual) .
public class Employee {

=) ey

public int getHours () {
e e A e // works 40 hours / week

}

public double getSalary () {
e tEn - 40000500 // $40,000.00 / year

}

public int getVacationDays () {
re e A0 // 2 weeks' paid vacation

}

public String getVacationForm() {
REEtNan R e ionil // use the yellow form

}

» Exercise: Implement class secretary, based on the previous

employee regulations. (Secretaries can take dictation.)

~ Copyright 2008 by Pearson Education

10

//
Redundant Secretary class

// A redundant class to represent secretaries.
public class Secretary {
public int getHours () {
=y Dl el A Of // works 40 hours / week

}

public double getSalary () {
e tEn - 40000500 // $40,000.00 / year

}

public int getVacationDays () {
re e a0 // 2 weeks' paid vacation

}

public String getVacationForm() {
REEtNan R e ionil // use the yellow form

}

public void takeDictation (String text) ({
System.out.println ("Taking dictation of text: " + text);

}

154

S - Copyright 2008 by Pearson Education

Desire for code-sharing

* takeDictation is the only unique behavior in Secretary.

» We'd like to be able to say:

// A class to represent secretaries.
public class Secretary {
copy all the contents from the Employee class;

public void takeDictation (String text) {

Siesieehisotky e s T askasn g diicibaitito n o et v e e s v
}

1:2

~ Copyright 2008 by Pearson Education

Inheritance

* inheritance: A way to form new classes based on
existing classes, taking on their attributes/behavior.
* a way to group related classes
» a way to share code between two or more classes

* One class can extend another, absorbing its
data/behavior.
» superclass: The parent class that is being extended.

» subclass: The child class that extends the superclass and
inherits its behavior.
« Subclass gets a copy of every field and method from superclass

153
Copyright 2008 by Pearson Education

Inheritance syntax

public class name extends superclass |

 Example:

public class Secretary extends Employee ({

* By extending Employee, each Secretary object now:

e receives a getHours, getSalary, getVacationDays, and
getVacationForm method automatically

» can be treated as an Employee by client code (seen later)

Copyright 2008 by Pearson Education

14

Improved Secretary code

// A class to represent secretaries.
public class Secretary extends Employee
public void takeDictation(String text) {
SRVASH B 1A e N o) 6 A 1 0 B ol o o A e o I QY © B 0 o 1 B O M O] o 8 o ot ¥t il 0 o B

}

* Now we only write the parts unique to each type.

e Secretary inherits getHours, getSalary, getVacationDays,
and getVacationForm methods from Employee.

* Secretary adds the takeDictation method.

155
Copyright 2008 by Pearson Education

———

Implementing Lawyer

* Consider the following lawyer regulations:
 Lawyers who get an extra week of paid vacation (a total of 3).
» Lawyers use a pink form when applying for vacation leave.
 Lawyers have some unique behavior: they know how to sue.

* Problem: We want lawyers to inherit most behavior from
employee, but we want to replace parts with new
behavior.

— 16
Copyright 2008 by Pearson Education

Overriding methods

* override: To write a new version of a method in a
subclass that replaces the superclass's version.

» No special syntax required to override a superclass method.
Just write a new version of it in the subclass.

public class Lawyer extends Employee {
// overrides getVacationForm method in Employee class
public String getVacationForm() {
return "pink";

}

» Exercise: Complete the Lawyer class.
« (3 weeks vacation, pink vacation form, can sue)

— - o
Copyright 2008 by Pearson Education

Lawyer class

// A class to represent lawyers.
public class Lawyer extends Employee {

// overrides getVacationForm from Employee class
PSS I R R e B Gl B RON ORI R
I @S BA b Rl § B ol ki g1 G

}

// overrides getVacationDays from Employee class
publitcrintagetVacat Tonbaysi() =]
e T 5 // 3 weeks vacation

}

Pl evordE sire
Systemsontaprint (el see s yous TR icouE B RN

}

» Exercise: Complete the Marketer class. Marketers make

$10,000 extra ($50,000 total) and know how to advertise.

§ Copy right 2008 by Pearson Education

18

- —
Marketer class

// A class to represent marketers.
public class Marketer extends Employee {
public void advertise() {
SRVASHE=) (PO TP O A B0 B ol Il (AT o Be g HO) /] AT SR YT o ol Ik 2= o R Lo B ity B

}

public double getSalary () {
return “50000505 // $50,000.00 / year

}

]

19

_ " Copyright 2008 by Pearson Education

Levels of inheritance

» Multiple levels of inheritance in a hierarchy are allowed.

» Example: A legal secretary is the same as a regular secretary
but makes more money ($45,000) and can file legal briefs.

public class LegalSecretary extends Secretary {

» Exercise: Complete the LegalSecretary class.

— 20
Copyright 2008 by Pearson Education

- —
LegalSecretary class

// A class to represent legal secretaries.
public class LegalSecretary extends Secretary {
public void filelLegalBriefs () {
R VA=) (1 B @ B o © 3 2) 1l A e o B @ VI A e 5. o e S S oo £ bl by e My

}

public double getSalary () {
return 4500050 // $45,000.00 / year

}

2%

_ " Copyright 2008 by Pearson Education

_ ——

Interacting with the
Superclass (super)

reading: 9.2

r

Changes to common behavior

* Imagine a company-wide change affecting all employees.

Example: Everyone is given a $10,000 raise due to inflation.
» The base employee salary is now $50,000.

» Legal secretaries now make $55,000.

» Marketers now make $60,000.

» We must modify our code to reflect this policy change.

23

Copyright 2008 by Pearson Education

Modifying the superclass

// A class to represent employees in general (20-page manual) .
e e S S Emp o e e,
publ ezl gaet Hours G
return 40; // works 40 hours / week

}

bl adaibilcagcESadiarye Gisa
return 50000.0; // $50,000.00 / year

}

}

e Are we finished?

* The Employee subclasses are still incorrect.
» They have overridden getSalary to return other values.

g ————

_ Copyright 2008 by Pearson Education

An unsatisfactory solution

public class LegalSecretary extends Secretary {
public double getSalary () {
return 55000.0;

}

public class Marketer extends Employee {
pabireR dotibilke et Sadiaue iy
return 60000.0;

}

* Problem: The subclasses' salaries are based on the Employee
salary, but the getsalary code does not reflect this.

A,
Copyright 2008 by Pearson Education

Calling overridden methods

» Subclasses can call overridden methods with super
super . method (parameters)

 Example:

public class LegalSecretary extends Secretary {
public double getSalary () {
double baseSalary = super.getSalary():;
ReFUrR: bage Salkaryreatan (00 ml)e

y ~ Copyright 2008 by Pearson Education

26

,,/

g

Inheritance and constructors

* Imagine that we want to give employees more vacation
days the longer they've been with the company.

» For each year worked, we'll award 2 additional vacation days.

» When an Employee object is constructed, we'll pass in the
number of years the person has been with the company.

» This will require us to modify our Employee class and add
some new state and behavior.

» Exercise: Make necessary modifications to the Employee class.

— 2
Copyright 2008 by Pearson Education

B

Modified :

PlabiF e s SHEMpO e e
private int years;

mployee Class

public Employee (int initialYears) ({
years = initialYears;

}

pubilic intigetHonrs ()
return 40;

}

publacuidonbliesgotSalary-Cld
return 50000 .0;

}

ojbl S e Hea e Y e e e B by
return 10 + 2 * years;

}

publc St ingigoitaic it onECEmaEE
return "yellow";

~ Copyright 2008 by Pearson Education

28

Problem with constructors

* Now that we've added the constructor to the Employee
class, our subclasses do not compile. The error:

Bawyiel v e v e saeie Skl b el
SympeiaieseoRicib et el plsoNc cHE)
location: class Employee

public class Lawyer extends Employee ({

A

» The short explanation: Once we write a constructor (that
requires parameters) in the superclass, we must now write
constructors for our employee subclasses as well.

 The long explanation: (next slide)

Copyright 2008 by Pearson Education

29

The detailed explanation

e Constructors are not inherited.
» Subclasses don't inherit the Employee (int) constructor.

e Subclasses receive a default constructor that contains:

puabltcEawyer)]
super () ; // calls Employee () constructor

}

» But our Employee (int) replaces the default Employee ().

» The subclasses' default constructors are now trying to call a
non-existent default Employee constructor.

— 30
Copyright 2008 by Pearson Education

Calling superclass constructor

super (parameters) ;

« Example:
public class Lawyer extends Employee {
public Lawyer (1nt years) {
super (years); // calls Employee constructor

}

}

» The super call must be the first statement in the constructor.

o Exercise: Make a similar modification to the Marketer class.

il

~ Copyright 2008 by Pearson Education

Modified Marketer class

// A class to represent marketers.
public class Marketer extends Employee {
public Marketer (int years) {
super (years) ;

}

pubidsrervoidradverbiseitlas
System.out.println ("Act now while supplies last!");

}

public double getSalary () {
return super.getSalary() + 10000.0;

}

» Exercise: Modify the secretary subclass.
« Secretaries' years of employment are not tracked.
« They do not earn extra vacation for years worked.

Copyright 2008 by Pearson Education

32

Modified Secretary class

// A class to represent secretaries.
piibiEesteireisiss e crRc e saveecs el deiic Al
public Secretary () {
super (0) ;
}

pubilresvordisEakePDrctatron SEring stext)]
Systemzoutsprintln Takingadictation o itext e Rt asciges

}

» Since Secretary doesn't require any parameters to its
constructor, LegalSecretary compiles without a constructor.
« Its default constructor calls the secretary () constructor.

33

y ~ Copyright 2008 by Pearson Education

g

Inheritance and fields

» Try to give lawyers $5000 for each year at the company:

public class Lawyer extends Employee {

public double getSalary () {
return super.getSalary() + 5000 * years;
}

}

* Does not work; the error is the following:

Lawyer.java:/: years has private access 1n Employee
return super.getSalary () + 5000 * years;

A

* Private fields cannot be directly accessed from
subclasses.

 One reason: So that subclassing can't break encapsulation.

» How can we get around this limitation?

e 34
Copyright 2008 by Pearson Education

Improved Employee code

Add an accessor for any field needed by the subclass.

public class Employee {
private int years;

public Employee (int initialYears) {
years = 1initialYears;

}

public int getYears() {
return years;
}

}

public class Lawyer extends Employee {
public Lawyer (int years) {
super (years) ;
}

public double getSalary () {
return super.getSalary() + 5000 * getYears():

}

Copyright 2008 by Pearson Education

35

e ————

Revisiting Secretary

* The secretary class currently has a poor solution.

» We set all Secretaries to 0 years because they do not get a
vacation bonus for their service.

o If we call getYears on a Secretary object, we'll always get 0.

e This isn't a good solution; what if we wanted to give some
other reward to all employees based on years of service?

g

* Redesign our Employee class to allow for a better
solution.

e 36
Copyright 2008 by Pearson Education

Improved Employee code

o Let's separate the standard 10 vacation days from those
that are awarded based on seniority.

ol e R e e M e e B o AT Al
private int years;

prlbiersEmploye el inttadnibara e a Sy
years = 1initialYears;

}

public int getVacationDays () ({
return 10 + getSeniorityBonus () ;

}
// vacation days given for each year in the company

public int getSeniorityBonus() {
return 2 * years;

}
} e

» How does this help us improve the secretary?

37
Copyright 2008 by Pearson Education

Improved Secretary code

- Secretary can selectively override getSeniorityBonus;
when getVacationDays runs, it will use the new version.

 Choosing a method at runtime is called dynamic binding.

public class Secretary extends Employee ({
pubiEFeSe e retar Gt iiyoae sy
super (years) ;

}

// Secretaries don't get a bonus for their years of service.
public int getSeniorityBonus() {
return O;

}

pabErerviowdssakaebicEation Stk ngse s
A Mo RO Y ETAS Sl A E A g oo e o S TS e O W A S N B Al (e 8 Rl B b sy Lt S S el

}

38
Copyright 2008 by Pearson Education

———

Polymorphism

* polymorphism: Ability for the same code to be used
with different types of objects and behave differently with
each.

e System.out.println can print any type of object.
- Each one displays in its own way on the console.

» CritterMain can interact with any type of critter.
- Each one moves, fights, etc. in its own way.

39
Copyright 2008 by Pearson Education

Coding with polymorphism
* A variable of type T can hold an object of any subclass of T.

Employee ed = new Lawyer();

* You can call any methods from the Employee class on ed.

* When a method is called on ed, it behaves as a Lawyer.

System.out.println (ed.getSalary()) ; // 50000.0
System.out.println (ed.getVacationForm()) ; // pink

Copyright 2008 by Pearson Education

40

Polymorphism and
parameters

* You can pass any subtype of a parameter's type.

public class EmployeeMain {
public static void main(String[] args) {
Lawyer lisa = new Lawyer();

Secretary steve = Secretary () ;

printInfo (lisa) ; hem*

printInfo (steve) ; \\\\\\\\\\\\\\$
}

public static void printInfo (Employee empl) {

VA=Kl BEOHE Mt & Do raa A0 LY O (B L i Vil S ey = 1) M R R O W B oY o = b v b
System.out.println("v.days: " + empl.getVacationDays()):
SystemsontrprintimtiNrrRormeratemplisgeEVacationFoenE G
System. outSprintin @):;
}

}

OUTPUT:

salary: 50000.0 salary: 50000.0

v.days: 15 AL e A g e 6]

v.form: pink v.form: yellow

Copyright 2008 by Pearson Education

41

Polymorphism and arrays

* Arrays of superclass types can store any subtype as elements.

public class EmployeeMainZ {
publicistatic voidimaini{stringll args) {
Employee[] e = { new Lawyer(), new Secretary(),
new Marketer (), new LegalSecretary() };

T O e G L S e b o e < = T I Y @ e e) e |
S VS EC MOl EaP i b e S s sy et e bzl rqgetSal ary ()
Systemyoutsprintlnitivydays it
e[i] .getVacationDays()) ;
VAT =1 e b Eaig ol el A N oa W p b ey
}

}

Output:

salary: 50000.0
v.days: 15
Saliary: 5000050
WEAE b BV b
salary: 60000.0
e h RS Beedd)
salary: 55000.0
v.days: 10

Copyright 2008 by Pearson Education

42

A polymorphism problem

e Suppose that the following four classes have been declared:

publrc elass Eoo. v
pilvdeicivorisdiametheedag)=m
Sy SEem OBty PRt ECos I

}

publiresveordimethod2:():=]
sy stenmrouwt i printlnttioe 20

}

PR eEES e O S R rich]
e ERE Y Fo o,

}
}

pUdEre e S Ra e e dis ERe g
publtc:vord: method2 ()4
Siis e nl o e b bRt et o e s

}

Copyright 2008 by Pearson Education

43

A polymorphism problem

P A S S R 7 e S T SE e 2
pubrcavigrdsmethiodiE@ad
NS ECIROE o e b I R AR e e
}
pub e SEring oS B ()]
(=35 B 8 g g o 7> Skt

}
}
public class Mumble extends Baz {

public vord metheod2:)=1
SVisEem ot apr etk mumble ez e

}
}

* What would be the output of the following client code?

Foo[] pity = {new Baz (), new Bar (), new Mumble (), new Foo() };

£ M Ol TR i o Wk s YA = S o e P o PG
A R O D R ST AN AL A o Ja L o 21 o B PR
pity[i] .methodl () ;

pity[i] .method2 () ;

Sy et spirnEnis,

I ON e

44

Copyright 2008 by Pearson Education

Diagramming the classes

* Add classes from top (superclass) to bottom (subclass).

e Include all inherited methods.

Foo
methoc fon
methooz2 foo 2
tostring foo

.i|':.

Bar Baz
{rmethactf) foo 1 method1 haz 1
method?2? (methoo?)
bar 2 foo 2
ftostring) oo toString haz
Mumble
{rmetfocf) haz
{toString) haz

s Copyright 2008 by Pearson Education

g

Finding output with tables

method Foo Bar Baz Mumble
methodl FOO ok OO] baz 1 o]
method?2 EoReY lerertas) Lo MG e

oSt EilncE 1 E00 I 0L) baz baz

Copyright 2008 by Pearson Education

Foo[]
For

baz
baz
foo

foo
Bee
bar

baz
baz

mumble 2

foo
FEHE

e Output:

Ik
2

NS

1

i

foo 2

__ Copyright 2008 by Pearson Education

Polymorphism answer

pity
(Etahssat
System.out.prinEln(pityil):;
paE s merhioehE e

pity[i] .method2 () ;

SYySEems olrEEpr G s

{new Baz (),
Pl vEsie ek R

new Bar (), new Mumble (), new Fool() };

Another problem

* The order of the classes is jumbled up.
* The methods sometimes call other methods (tricky!).

public class Lamb extends Ham {
publc=void=bif=1
SvisEemro P rrrmsCthamosb R
}

}

public class Ham {

pUblEesvreaEd ey
SHSE e N et oc e R T) 28 0
b();

}

pubiltiiesazosidaT s
SVis Eemzonl v nda G Ham=b A

}

pEblEreESErEn et O rdgEG) e
el =B e B AR RS

}

Copyright 2008 by Pearson Education

48

Another problem 2

public class Spam extends Yam {
publicsveoidcbi()=
System.out.print ("Spam b A]
}

}

public class Yam extends Lamb {
public void a() {
System.out.print ("Yam a A0
super.a() ;

}

pablifcEsEring st oSt ring Py
D] = BN G g R = 1 ks
}

)
* What would be the output of the following client code?

Ham[] food = {new Lamb (), new Ham(), new Spam(), new Yam() };,
Eoraintais =20 ivesfoodizlenghyrd)

System.out.println (food[1i]) ;

food[i].a() ;

System.out.println() ; // to end the line of output
food[i] .b() ;
S Sl RS Ol Aol T) // to end the line of output

R e B e O e A S el e Sl o

}

49
Copyright 2008 by Pearson Education

Class diagram

Ham

al)
b
toString()

Lamb

af
b
toString()

Yam

ai
b()
toString(

Spam

afl
b
toString()

50

___ Copyright 2008 by Pearson Education

Polymorphism at work

e L.amb inherits Ham's a. a calls b. But Lamb overrides b...

pablEiesclass Ham:

PElDAaEC RO e e
System.out.print ("Ham a e
b();

}

Sl eE e o o R B e
System.out.print ("Ham b R

}

IB STl e €he S hmd o BB 5 fe A B Fe RN @il O o o P
2 SN A5 o MO 2 o g R

}
}

public class Lamb extends Ham {
public void b () {
System.out.print("Lamb b 4 B
}

}

* Lamb's output from a:
Ham a Lamb b

Copyright 2008 by Pearson Education

5k

method Ham Lamb Yam Spam
a Ham a Ham a Yam a Yam a
b () b() Ham a o
b() b()
b Ham b Lamb b Lamb b Spam b
toString | Ham Ham Yam Yam

Copyright 2008 by Pearson Education

52

The answer

Ham[] food = {new Lamb (), new Ham(),

ot ara=aiima s Booedho et
System.out.println(foodf[1i]);
NSNS o b oo o (e
@)Y o k] e O3 (@)
Sy S ECmol Pt R

J

e Output:
Ham
Ham a Lamb Db
IEENlore

Ham
Ham a
Ham b

Yam
Yam a Ham a Speliivie
Spam b

Ham Db

Yam
Yam a Ham a Eambzab

Lamb b
“

!" Copyright 2008 by Pearson Education

Qi)

new Spamf(),

{

new Yam () };

53

Casting references

* A variable can only call that type's methods, not a subtype's.

Employee ed = new Lawyer();
int hours = ed.getHours(); // ok; this is in Employee
ed.sue () ; // compiler error

» The compiler's reasoning is, variable ed could store any kind of
employee, and not all kinds know how to sue .

* To use Lawyer methods on ed, we can type-cast it.

Lawyer theRealEd = (Lawyer) ed;
theRealEd.sue () ; // ok

((Lawyer) ed) .sue(); // shorter version

54
Copyright 2008 by Pearson Education

More about casting

» The code crashes if you cast an object too far down the tree.

Employee eric = new Secretary():;
GESecrettary)y ernagirakeRictatronsiingiows // ok
((LegalSecretary) eric) .filelegalBriefs(); // exception

754 (Secretary object doesn't know how to file briefs)

* You can cast only up and down the tree, not sideways.

Lawyer linda = new Lawyer();
((Secretary) linda) .takeDictation("hi"); // error

e Casting doesn't actually change the object's behavior.
It just gets the code to compile/run.

((Employee) 1linda) .getVacationForm() // pink (Lawyer's)

5
Copyright 2008 by Pearson Education

