Building Java Programs

Chapter 9
Lecture 9-1: Inheritance, Polymorphism;

reading: 9.1 - 9.3

g ————

~ Copyright 2008 by Pearson Education

JOB INTERVIEW

WE NEED SOMEONE
WHO CAN SOLVE THE
BIGGEST ENGINEERING
PROBLEM WE HAVE EVER
ENCOUNTERED.

scottadams@aol.com

www.dilbert.com

JUST DISTRIBUTE THE
POWER SUPPLY ACROSS
BOTH FUNCTIONS AND
DOUBLE THE FAN SIZE.

~ Copyright 2008 by Pearson Education

5-6-06 ©2006Scott Adams, Inc./Dist. by UFS, Inc.

THANKS. IF T NEED
ANYTHING ELSE, T'LL
INTERVIEW YOU
AGAIN.

I

// g o
The software crisis

» software engineering: The practice of developing,
designing, documenting, testing large computer
programs.

* Large-scale projects face many issue:
e programmers working together
» getting code finished on time
» avoiding redundant code
» finding and fixing bugs
» maintaining, reusing existing code

*» code reuse: The practice of writing program code once
and using it in many contexts.

' Copyright 2008 by Pearson Education

I

=
Law firm employee analogy

e common rules: hours, vacation, benefits, regulations ...

» all employees attend a common orientation to learn general
company rules

» each employee receives a 20-page manual of common rules

e each subdivision also has specific rules:
» employee receives a smaller (1-3 page) manual of these rules

» smaller manual adds some new rules and also changes some
rules from the large manual

Employee
20-page manual
£

Lawyer Secretary Marketer
2-page manual 1-page manual 3-page manual

T

LegalSecretary
1-page manual 4

_ Copyright 2008 by Pearson Education

— el

e ——

Separating behavior

* Why not just have a 22 page Lawyer manual, a 21-page
Secretary manual, a 23-page Marketer manual, etc.?

* Some advantages of the separate manuals:

« maintenance: Only one update if a common rule changes.
» |ocality: Quick discovery of all rules specific to lawyers.

* Some key ideas from this example:
» General rules are useful (the 20-page manual).
» Specific rules that may override general ones are also useful.

Copyright 2008 by Pearson Education

sl

/7

Is-a relationships, hierarchies

* Is-a relationship: A hierarchical connection where one
category can be treated as a specialized version of
another.

» every marketer is an employee
» every legal secretary is a secretary

* inheritance hierarchy: A set of classes connected by is-
a relationships that can share common code.

\.\.

Copyright 2008 by Pearson Education

— el

mployee regulations

» Consider the following employee regulations:
» Employees work 40 hours / week.

« Employees make $40,000 per year, except legal secretaries who
make $5,000 extra per year ($45,000 total), and marketers who
make $10,000 extra per year ($50,000 total).

» Employees have 2 weeks of paid vacation leave per year, except
lawyers who get an extra week (a total of 3).

» Employees should use a yellow form to apply for leave, except for
lawyers who use a pink form.

» Each type of employee has some unique behavior:
 Lawyers know how to sue.
» Marketers know how to advertise.
» Secretaries know how to take dictation.
» Legal secretaries know how to prepare legal documents.

Copyright 2008 by Pearson Education

I

 —
An Employee class

// A class to represent employees in general (20-page manual) .
OO B e e R e s Wl oR o]
public int getHours () {
return 40; // works 40 hours / week

}

public double getSalary () {
return 40000.0; // $40,000.00 / year

}

Py e bV ar s oo e
hem e // 2 weeks' paid vacation

}

01Vl o8 B S YRn s MaVe o TV S Vel s Welib e VAl o mirid 6 it
return "yellow"; // use the yellow form

}

» Exercise: Implement class secretary, based on the previous
employee regulations. (Secretaries can take dictation.)

: Copyright 2008 by Pearson Education

I

Redundant Secretary class

// A redundant class to represent secretaries.
oo N s e b U RS el S WG
public int getHours () {
return 40; // works 40 hours / week

}

public double getSalary () {
return 40000.0; // $40,000.00 / year

}

Py e bV ar s oo e
hem e // 2 weeks' paid vacation

}

01Vl o8 B S YRn s MaVe o TV S Vel s Welib e VAl o mirid 6 it
return "yellow"; // use the yellow form

}

public void takeDictation(String text) ({
System.out.println ("Taking dictation of text: " + text);

}

—

o) ey

" Copyright 2008 by Pearson Education

—

I

- —

-

Desire for code-sharing

* takeDictation is the only unique behavior in Secretary.

» We'd like to be able to say:

// A class to represent secretaries.

public class Secretary {
copy all the contents from the Employee class;

public void takeDictation (String text) {
SV SemaolapranEibn R alkingdime b ol onvoRi b et e ese b

}

10

~ Copyright 2008 by Pearson Education

e —

Inheritance

* inheritance: A way to form new classes based on
existing classes, taking on their attributes/behavior.

* a way to group related classes
* a way to share code between two or more classes

* One class can extend another, absorbing its data/
behavior.
» superclass: The parent class that is being extended.

» subclass: The child class that extends the superclass and
inherits its behavior.
« Subclass gets a copy of every field and method from superclass

Copyright 2008 by Pearson Education

11

- —

Inheritance syntax

public class name extends superclass {

 Example:

public class Secretary extends Employee ({

* By extending Employee, each Secretary object now:

e receives a getHours, getSalary, getVacationDays, and
getVacationForm method automatically

» can be treated as an Employee by client code (seen later)

Copyright 2008 by Pearson Education

12

I

- —

g

Improved Secretary code

// A class to represent secretaries.
public class Secretary extends Employee ({
public void takeDictation(String text) {
A R oA Rr e e e RSO e e b e b e S e S M R e s

}

* Now we only write the parts unique to each type.

e Secretary inherits getHours, getSalary, getVacationDays,
and getVacationForm methods from Employee.

* Secretary adds the takeDictation method.

— 13
. Copyright 2008 by Pearson Education

sl

e — —_—

Implementing Lawyer

* Consider the following lawyer regulations:
 Lawyers who get an extra week of paid vacation (a total of 3).
» Lawyers use a pink form when applying for vacation leave.
 Lawyers have some unique behavior: they know how to sue.

* Problem: We want lawyers to inherit most behavior from
employee, but we want to replace parts with new
behavior.

e 14
Copyright 2008 by Pearson Education

///""“""\ A

- —

g

Overriding methods

* override: To write a new version of a method in a
subclass that replaces the superclass's version.

» No special syntax required to override a superclass method.
Just write a new version of it in the subclass.

public class Lawyer extends Employee {
// overrides getVacationForm method in Employee class
public String getVacationForm() {
return "pink";

}

» Exercise: Complete the Lawyer class.
« (3 weeks vacation, pink vacation form, can sue)

— %)
Copyright 2008 by Pearson Education

Lawyer Class

// A class to represent lawyers.
public class Lawyer extends Employee {
// overrides getVacationForm from Employee class
ot H R e e e S Ve beah o ee R e
return "pink";

}

// overrides getVacationDays from Employee class
public int getVacationDays () {

VS U VYR e W // 3 weeks vacation
}
pubilaievisrondivs e v
SRR e TR e LA AT o e e e e U e e S WA

}

o Exercise: Complete the Marketer class. Marketers make
$10,000 extra ($50,000 total) and know how to advertise.

~ Copyright 2008 by Pearson Education

_ mm—

Marketer class

// A class to represent marketers.
public class Marketer extends Employee ({
public void advertise () {
System.out.println ("Act now while supplies last!");

}

public double getSalary () {
VIEHI U &y Y A GRYYN YN // $50,000.00 / year

}

= 17
___ Copyright 2008 by Pearson Education

o —

Levels of inheritance

» Multiple levels of inheritance in a hierarchy are allowed.

« Example: A legal secretary is the same as a regular secretary
but makes more money ($45,000) and can file legal briefs.

-

public class LegalSecretary extends Secretary {

» Exercise: Complete the LegalSecretary class.

— 18
Copyright 2008 by Pearson Education

A A A A A A A A AN NN NS b O i

sm—
e S ey 0lASS

// A class to represent legal secretaries.
public class LegalSecretary extends Secretary {
public void filelegalBriefs () {
A O et e e e Ty B e e e O Rl

}

public double getSalary () {
return 45000.0; // $45,000.00 / year

}

vay

19

_ " Copyright 2008 by Pearson Education

L —

Interacting with the
Superclass (super)

reading: 9.2

sl

/Zw

s

Changes to common behavior

» Imagine a company-wide change affecting all employees.

Example: Everyone is given a $10,000 raise due to inflation.
» The base employee salary is now $50,000.

» Legal secretaries now make $55,000.

o Marketers now make $60,000.

* We must modify our code to reflect this policy change.

21

Copyright 2008 by Pearson Education

I

Modifying the superclass

// A class to represent employees in general (20-page manual) .
o8 DA eI el M de B O O A T
public int getHours () {
20 e R A B // works 40 hours / week

}

public double getSalary () {
return 50000.0; // $50,000.00 / year

}
}

e Are we finished?

* The Employee subclasses are still incorrect.
» They have overridden getSalary to return other values.

e 22

————

~ Copyright 2008 by Pearson Education

- —

An unsatisfactory solution

public class LegalSecretary extends Secretary {
public double getSalary () {
return 55000.0;

}

public class Marketer extends Employee ({

public double getSalary() {
return 60000.0;

}

* Problem: The subclasses' salaries are based on the Employee
salary, but the getsalary code does not reflect this.

— 4%
' Copyright 2008 by Pearson Education

I

- —

-

Calling overridden methods

e Subclasses can call overridden methods with super
super . method (parameters)

 Example:

public class LegalSecretary extends Secretary {
public double getSalary () {
double baseSalary = super.getSalary():
return baseSalary + 5000.0;

' Copyright 2008 by Pearson Education

I

- —

e
Improved subclasses

public class Lawyer extends Employee {
T S S S e R e e e e RO ANV O o)
return "pink";

}

pubevintge b raea e BDas s
return super.getVacationDays() + 5;

}

public void sue () {
Shrdchers) il bhuih ohma b ehed i e P A Y= Wi e o b i M i o Ton b b s s A L

}
}

public class Marketer extends Employee ({
public void advertise() {
A S N T Ay o N A S Y Y LY G E N R A iy S e e A B SR B V= S e Mo AR P

}

pubilirevdomblievraasalarrmiig
return super.getSalary() + 10000.0;

}

—— P4
' Copyright 2008 by Pearson Education

" el

/u

e

s

Inheritance and constructors

* Imagine that we want to give employees more vacation
days the longer they've been with the company.
» For each year worked, we'll award 2 additional vacation days.

« When an Employee object is constructed, we'll pass in the
number of years the person has been with the company.

o This will require us to modify our Employee class and add
some new state and behavior.

» Exercise: Make necessary modifications to the Employee class.

S 26
Copyright 2008 by Pearson Education

I
Modified Employee class

public class Employee {
private int years;

public Employee (int initialYears) {
years = initialYears;

}

BN S G M A e YA VAR B ST R W
returny A0y

}

public double getSalary () |
return 25000007

}

public int getVacationDays () {
return 10 + 2 * years;

}

publcystring vgetVacat T onForm¢) i
return "yellow";

27

_ Copyright 2008 by Pearson Education

o —

-

Problem with constructors

* Now that we've added the constructor to the Employee
class, our subclasses do not compile. The error:

Lawyer.java:2: cannot find symbol
symbol : constructor Employee ()
location: class Employee

public class Lawyer extends Employee {

A

» The short explanation: Once we write a constructor (that

requires parameters) in the superclass, we must now write
constructors for our employee subclasses as well.

 The long explanation: (next slide)

— 28
Copyright 2008 by Pearson Education

- —

-

The detailed explanation

» Constructors are not inherited.
» Subclasses don't inherit the Employee (int) constructor.

e Subclasses receive a default constructor that contains:

public Lawyer () {

super () ; // calls Employee () constructor

e But our Employee (int) replaces the default Employee ().

» The subclasses' default constructors are now trying to call a
non-existent default Employee constructor.

— 29
Copyright 2008 by Pearson Education

I

e

Calling superclass constructor

super (parameters) ;

 Example:

public class Lawyer extends Employee {
public Lawyer (1nt years) {
super (years); // calls Employee constructor

}

}

 The super call must be the first statement in the constructor.

o Exercise: Make a similar modification to the Marketer class.

—— 30
' Copyright 2008 by Pearson Education

I

- —

-

Modified Marketer class

// A class to represent marketers.
public class Marketer extends Employee ({
public Marketer (int years) {
super (years) ;

}

public void advertise () {
System.out.println ("Act now while supplies last!");

}

public double getSalary () {
returnyisuperiget Saliary (i b ge00 05

}

» Exercise: Modify the Secretary subclass.
« Secretaries' years of employment are not tracked.
« They do not earn extra vacation for years worked.

— 31
. Copyright 2008 by Pearson Education

I

- —

e

Modified Secretary class

// A class to represent secretaries.
public class Secretary extends Employee {
public Secretary () {
super (0) ;

}

publiesvoiditakebiichationitString text)y
System.out.println ("Taking dictation of text: " + text);
}

* Since Secretary doesn't require any parameters to its
constructor, LegalSecretary compiles without a constructor.
« Its default constructor calls the Secretary () constructor.

—— 32
' Copyright 2008 by Pearson Education

—

Inheritance and fields

* Try to give lawyers $5000 for each year at the company:

public class Lawyer extends Employee ({

>

public double getSalary () {
return super.getSalary() + 5000 * years;

}
-
* Does not work; the error is the following:

Lawyer.java:/: years has private access 1n Employee
return super.getSalary() + 5000 * years;

A

* Private fields cannot be directly accessed from
subclasses.
» One reason: So that subclassing can't break encapsulation.

» How can we get around this limitation?

SR 33
: Copyright 2008 by Pearson Education

I

- —

-

Improved Employee code

Add an accessor for any field needed by the subclass.

public class Employee {
private int years;

public Employee(int initialYears) {
years = 1initialYears;
}

public int getYears() {
return years;
}

}

public class Lawyer extends Employee {
public Lawyer (int years) {
super (years) ;

}

Pl ivevdloriblievigarisaiiairsrEiag
return super.getSalary() + 5000 * getYears():;
}

S 34
' Copyright 2008 by Pearson Education

— el

e —

Revisiting Secre

arv

* The secretary class currently has a poor solution.
 We set all Secretaries to 0 years because they do not get a

vacation bonus for their service.

o If we call getYears on a Secretary object, we'll always get 0.

e This isn't a good solution; what if we wanted to give some
other reward to al/l employees based on years of service?

» Redesign our Employee class to allow for a better

solution.

Copyright 2008 by Pearson Education

39

///""“""\ A

- —

Improved Employee code

o Let's separate the standard 10 vacation days from those
that are awarded based on seniority.

public class Employee {
private int years;

public Employee(int initialYears) {
years = 1initialYears;

}

pbiaesEnbagobaeaion Daysuiyae
return 10 + getSeniorityBonus()
}

// vacation days given for each year in the company
public int getSeniorityBonus () {
return 2 * years;

}
:

» How does this help us improve the Secretary?

— 36
Copyright 2008 by Pearson Education

- —

Improved Secretary code

- Secretary can selectively override getSeniorityBonus;
when getvVacationDays runs, it will use the new version.
» Choosing a method at runtime is called dynamic binding.

public class Secretary extends Employee ({
public Secretary(int years) {
super (years) ;

}
// Secretaries don't get a bonus for their years of service.
public int getSeniorityBonus () {

return O;

}

public void takeDictation(String text) {

Syistemvoubipeinb btV Eakingidre babionvioibexbri b iasd Y

}

" Copyright 2008 by Pearson Education

/u

- —

-

Polymorphism

 polymorphism: Ability for the same code to be used
with different types of objects and behave differently with
each.

» System.out.println can print any type of object.
« Each one displays in its own way on the console.

— 38
Copyright 2008 by Pearson Education

///""“""\ A

- —

g

Coding with polymorphism
* A variable of type T can hold an object of any subclass of T.

Employee ed = new Lawyer();

* You can call any methods from the Employee class on ed.

* When a method is called on eq, it behaves as a Lawyer.

System.out.println (ed.getSalary()) ; // 50000.0
System.out.println (ed.getVacationForm()) ; // pink

Copyright 2008 by Pearson Education

39

Polymorphism and
parameters

* You can pass any subtype of a parameter's type.

g

public class EmployeeMain {

publiensrataevaioddiemannESErinagiiv arags i
Lawyer lisa = new Lawyer();
Secretary i steve —='n Secretaryi);

printInfo(lisa); \\\\\\\\\\\\\\$
printInfo (steve) ;
}

public static void printInfo (Employee empl) {

System.out.println("salary: " + empl.getSalary()):;

System.out.println("v.days: " + empl.getVacationDays()):

System.out.println("v.form: " + empl.getVacationForm()):;
(

System.out.println();

}

OUTPUT:
salary: 50000.0 Sa a0
v.days: 15 WAe A= ard= i g

- v.form: pink v.form: yellow

— 40
' Copyright 2008 by Pearson Education

///-“’-am'“ 25

- —

Polymorphism and arrays

e Arrays of superclass types can store any subtype as elements.

public class EmployeeMainZ2 {
public static void main(String[] args) {
Employee[] e = { new Lawyer(), new Secretary (),
new Marketer (), new LegalSecretary() 1}

S i he b Y T T e AT Ao A
System.out.println("salary: " + e[i].getSalary()):
System.out.println ("v.days: " + e[i].getVacationDays

()
SRS AR =13 BN DN AR O AR WA ATA AL W I

}

Output:
Sadaveyre DO
Vi
Salary B 0RE0EE
Wivichavrere
salary: 60000.0
Vis chanharsvidil
salary: 55000.0
- v . davesiill

41
Copyright 2008 by Pearson Education

R
A polymorphism problem

e Suppose that the following four classes have been declared:

public class Foo {
public void methodl () {
System.out.println("foo 1");

}

publre voldimeblrod2h
System.out.println("foo 2");

}

publEner S g e S eaTa e
Eod oo s

}
}

P e s e R e e ses cnitlieeiRa e
publresvordhame o2
Srehemvomt P b Enae e

}

e 42
' Copyright 2008 by Pearson Education

- —

"”;”””’T:;,WW
A polymorphism problem

public class Baz extends Foo {
Pl revvisEelac o e e
Syvstemioutiprintin (N haz e

}

publidevstringy oSt Ring vy
Petrnitiy vt

}
}

eneH ST e e A A SE S e S At Re I e

PN e el et o e
Syistemiontrprintdn i nrimbie s

}
}

e What would be the output of the following client code?

Foo[] pity = {new Baz (), new Bar (), new Mumble(), new Foo() };
R oR S (halh g b e B I i o Bl A VI Y sleu b e o o

System.out.println (pity[i])

pity[i] .methodl () ;

pity[i] .method2 () ;

ST AS b Tl e o Ul B o s My B o (A

Copyright 2008 by Pearson Education

I

Diagramming the classes

e Add classes from top (superclass) to bottom (subclass).

e Include all inherited methods.

Foo
method1 foo 1
toString foo
Bar Baz
(methodt) foo 1 method1 haz 1
method2 bar 2 (methodZ) foo 2
(toString) foo toString haz
Mumble
(method) haz 1
{toString) haz

44

" Copyright 2008 by Pearson Education

—

—

/I;inding output with tables

method Foo Bar Baz Mumble
methodl Foowl o0 baz ik gz
method?2 oo S U oo 2 mumble 2

toString [foo FOO baz baz

Copyright 2008 by Pearson Education

I

//4,,¢¢—”’”N////l’ c
Polymorphism answer

Eoohipw s imawwR g av e iy et esga g mioihesi e e e o
o nn s I B S o BRI s Bl
System.out.println(pityl[i]);
pity[i] .methodl () ;
SR EY I s (e N R R S
System.out.println () ;

)
e Output:

baz
ezl
Poon

Foo
FO0o
bar

[3disk=d

baz
baz il
mumble 2

foo
OO
foo 2

—_— 46
i — Copyright 2008 by Pearson Education

