
Copyright 2008 by Pearson Education

Building Java Programs

Chapter 9
Lecture 9-1: Inheritance, Polymorphism;

reading: 9.1 – 9.3

Copyright 2008 by Pearson Education
2

Copyright 2008 by Pearson Education
3

The software crisis
  software engineering: The practice of developing,

designing, documenting, testing large computer
programs.

  Large-scale projects face many issues:
  programmers working together
  getting code finished on time
  avoiding redundant code
  finding and fixing bugs
  maintaining, reusing existing code

  code reuse: The practice of writing program code once
and using it in many contexts.

Copyright 2008 by Pearson Education
4

Law firm employee analogy
  common rules: hours, vacation, benefits, regulations ...

  all employees attend a common orientation to learn general
company rules

  each employee receives a 20-page manual of common rules

  each subdivision also has specific rules:
  employee receives a smaller (1-3 page) manual of these rules
  smaller manual adds some new rules and also changes some

rules from the large manual

Copyright 2008 by Pearson Education
5

Separating behavior
  Why not just have a 22 page Lawyer manual, a 21-page

Secretary manual, a 23-page Marketer manual, etc.?

  Some advantages of the separate manuals:
  maintenance: Only one update if a common rule changes.
  locality: Quick discovery of all rules specific to lawyers.

  Some key ideas from this example:
  General rules are useful (the 20-page manual).
  Specific rules that may override general ones are also useful.

Copyright 2008 by Pearson Education
6

Is-a relationships, hierarchies
  is-a relationship: A hierarchical connection where one

category can be treated as a specialized version of
another.
  every marketer is an employee
  every legal secretary is a secretary

  inheritance hierarchy: A set of classes connected by is-
a relationships that can share common code.

Copyright 2008 by Pearson Education
7

Employee regulations
  Consider the following employee regulations:

  Employees work 40 hours / week.
  Employees make $40,000 per year, except legal secretaries who

make $5,000 extra per year ($45,000 total), and marketers who
make $10,000 extra per year ($50,000 total).

  Employees have 2 weeks of paid vacation leave per year, except
lawyers who get an extra week (a total of 3).

  Employees should use a yellow form to apply for leave, except for
lawyers who use a pink form.

  Each type of employee has some unique behavior:
  Lawyers know how to sue.
  Marketers know how to advertise.
  Secretaries know how to take dictation.
  Legal secretaries know how to prepare legal documents.

Copyright 2008 by Pearson Education
8

An Employee class
// A class to represent employees in general (20-page manual).
public class Employee {
 public int getHours() {
 return 40; // works 40 hours / week
 }

 public double getSalary() {
 return 40000.0; // $40,000.00 / year
 }

 public int getVacationDays() {
 return 10; // 2 weeks' paid vacation
 }

 public String getVacationForm() {
 return "yellow"; // use the yellow form
 }
}

  Exercise: Implement class Secretary, based on the previous
employee regulations. (Secretaries can take dictation.)

Copyright 2008 by Pearson Education
9

Redundant Secretary class
// A redundant class to represent secretaries.
public class Secretary {
 public int getHours() {
 return 40; // works 40 hours / week
 }

 public double getSalary() {
 return 40000.0; // $40,000.00 / year
 }

 public int getVacationDays() {
 return 10; // 2 weeks' paid vacation
 }

 public String getVacationForm() {
 return "yellow"; // use the yellow form
 }

 public void takeDictation(String text) {
 System.out.println("Taking dictation of text: " + text);
 }
}

Copyright 2008 by Pearson Education
10

Desire for code-sharing
  takeDictation is the only unique behavior in Secretary.

  We'd like to be able to say:

// A class to represent secretaries.
public class Secretary {
 copy all the contents from the Employee class;

 public void takeDictation(String text) {
 System.out.println("Taking dictation of text: " + text);
 }
}

Copyright 2008 by Pearson Education
11

Inheritance
  inheritance: A way to form new classes based on

existing classes, taking on their attributes/behavior.
  a way to group related classes
  a way to share code between two or more classes

  One class can extend another, absorbing its data/
behavior.
  superclass: The parent class that is being extended.
  subclass: The child class that extends the superclass and

inherits its behavior.
  Subclass gets a copy of every field and method from superclass

Copyright 2008 by Pearson Education
12

Inheritance syntax
 public class name extends superclass {

  Example:

 public class Secretary extends Employee {
 ...

 }

  By extending Employee, each Secretary object now:
  receives a getHours, getSalary, getVacationDays, and
getVacationForm method automatically

  can be treated as an Employee by client code (seen later)

Copyright 2008 by Pearson Education
13

Improved Secretary code
// A class to represent secretaries.
public class Secretary extends Employee {
 public void takeDictation(String text) {
 System.out.println("Taking dictation of text: " + text);
 }
}

  Now we only write the parts unique to each type.
  Secretary inherits getHours, getSalary, getVacationDays,

and getVacationForm methods from Employee.
  Secretary adds the takeDictation method.

Copyright 2008 by Pearson Education
14

Implementing Lawyer
  Consider the following lawyer regulations:

  Lawyers who get an extra week of paid vacation (a total of 3).
  Lawyers use a pink form when applying for vacation leave.
  Lawyers have some unique behavior: they know how to sue.

  Problem: We want lawyers to inherit most behavior from
employee, but we want to replace parts with new
behavior.

Copyright 2008 by Pearson Education
15

Overriding methods
  override: To write a new version of a method in a

subclass that replaces the superclass's version.
  No special syntax required to override a superclass method.

Just write a new version of it in the subclass.

 public class Lawyer extends Employee {
 // overrides getVacationForm method in Employee class
 public String getVacationForm() {
 return "pink";
 }
 ...
 }

  Exercise: Complete the Lawyer class.
  (3 weeks vacation, pink vacation form, can sue)

Copyright 2008 by Pearson Education
16

Lawyer class
// A class to represent lawyers.
public class Lawyer extends Employee {
 // overrides getVacationForm from Employee class
 public String getVacationForm() {
 return "pink";
 }

 // overrides getVacationDays from Employee class
 public int getVacationDays() {
 return 15; // 3 weeks vacation
 }

 public void sue() {
 System.out.println("I'll see you in court!");
 }
}

  Exercise: Complete the Marketer class. Marketers make
$10,000 extra ($50,000 total) and know how to advertise.

Copyright 2008 by Pearson Education
17

Marketer class
// A class to represent marketers.
public class Marketer extends Employee {
 public void advertise() {
 System.out.println("Act now while supplies last!");
 }

 public double getSalary() {
 return 50000.0; // $50,000.00 / year
 }
}

Copyright 2008 by Pearson Education
18

Levels of inheritance
  Multiple levels of inheritance in a hierarchy are allowed.

  Example: A legal secretary is the same as a regular secretary
but makes more money ($45,000) and can file legal briefs.

 public class LegalSecretary extends Secretary {
 ...

 }

  Exercise: Complete the LegalSecretary class.

Copyright 2008 by Pearson Education
19

LegalSecretary class
// A class to represent legal secretaries.
public class LegalSecretary extends Secretary {
 public void fileLegalBriefs() {
 System.out.println("I could file all day!");
 }

 public double getSalary() {
 return 45000.0; // $45,000.00 / year
 }
}

Copyright 2008 by Pearson Education

Interacting with the
Superclass (super)

reading: 9.2

Copyright 2008 by Pearson Education
21

Changes to common behavior
  Imagine a company-wide change affecting all employees.

Example: Everyone is given a $10,000 raise due to inflation.
  The base employee salary is now $50,000.
  Legal secretaries now make $55,000.
  Marketers now make $60,000.

  We must modify our code to reflect this policy change.

Copyright 2008 by Pearson Education
22

Modifying the superclass
// A class to represent employees in general (20-page manual).
public class Employee {
 public int getHours() {
 return 40; // works 40 hours / week
 }

 public double getSalary() {
 return 50000.0; // $50,000.00 / year
 }

 ...
}

  Are we finished?

  The Employee subclasses are still incorrect.
  They have overridden getSalary to return other values.

Copyright 2008 by Pearson Education
23

An unsatisfactory solution
public class LegalSecretary extends Secretary {
 public double getSalary() {
 return 55000.0;
 }
 ...
}

public class Marketer extends Employee {
 public double getSalary() {
 return 60000.0;
 }
 ...
}

  Problem: The subclasses' salaries are based on the Employee
salary, but the getSalary code does not reflect this.

Copyright 2008 by Pearson Education
24

Calling overridden methods
  Subclasses can call overridden methods with super

 super.method(parameters)

  Example:
 public class LegalSecretary extends Secretary {
 public double getSalary() {
 double baseSalary = super.getSalary();
 return baseSalary + 5000.0;
 }
 ...
 }

Copyright 2008 by Pearson Education
25

Improved subclasses
public class Lawyer extends Employee {
 public String getVacationForm() {
 return "pink";
 }

 public int getVacationDays() {
 return super.getVacationDays() + 5;
 }

 public void sue() {
 System.out.println("I'll see you in court!");
 }
}

public class Marketer extends Employee {
 public void advertise() {
 System.out.println("Act now while supplies last!");
 }

 public double getSalary() {
 return super.getSalary() + 10000.0;
 }
}

Copyright 2008 by Pearson Education
26

Inheritance and constructors
  Imagine that we want to give employees more vacation

days the longer they've been with the company.
  For each year worked, we'll award 2 additional vacation days.

  When an Employee object is constructed, we'll pass in the
number of years the person has been with the company.

  This will require us to modify our Employee class and add
some new state and behavior.

  Exercise: Make necessary modifications to the Employee class.

Copyright 2008 by Pearson Education
27

Modified Employee class
public class Employee {
 private int years;

 public Employee(int initialYears) {
 years = initialYears;
 }

 public int getHours() {
 return 40;
 }

 public double getSalary() {
 return 50000.0;
 }

 public int getVacationDays() {
 return 10 + 2 * years;
 }

 public String getVacationForm() {
 return "yellow";
 }
}

Copyright 2008 by Pearson Education
28

Problem with constructors
  Now that we've added the constructor to the Employee

class, our subclasses do not compile. The error:
Lawyer.java:2: cannot find symbol
symbol : constructor Employee()
location: class Employee
public class Lawyer extends Employee {
 ^

  The short explanation: Once we write a constructor (that
requires parameters) in the superclass, we must now write
constructors for our employee subclasses as well.

  The long explanation: (next slide)

Copyright 2008 by Pearson Education
29

The detailed explanation
  Constructors are not inherited.

  Subclasses don't inherit the Employee(int) constructor.

  Subclasses receive a default constructor that contains:

public Lawyer() {

 super(); // calls Employee() constructor
}

  But our Employee(int) replaces the default Employee().
  The subclasses' default constructors are now trying to call a

non-existent default Employee constructor.

Copyright 2008 by Pearson Education
30

Calling superclass constructor
 super(parameters);

  Example:

 public class Lawyer extends Employee {
 public Lawyer(int years) {
 super(years); // calls Employee constructor
 }
 ...
 }

  The super call must be the first statement in the constructor.

  Exercise: Make a similar modification to the Marketer class.

Copyright 2008 by Pearson Education
31

Modified Marketer class
// A class to represent marketers.
public class Marketer extends Employee {
 public Marketer(int years) {
 super(years);
 }

 public void advertise() {
 System.out.println("Act now while supplies last!");
 }

 public double getSalary() {
 return super.getSalary() + 10000.0;
 }
}

  Exercise: Modify the Secretary subclass.
  Secretaries' years of employment are not tracked.
  They do not earn extra vacation for years worked.

Copyright 2008 by Pearson Education
32

Modified Secretary class
// A class to represent secretaries.
public class Secretary extends Employee {
 public Secretary() {
 super(0);
 }

 public void takeDictation(String text) {
 System.out.println("Taking dictation of text: " + text);
 }
}

  Since Secretary doesn't require any parameters to its
constructor, LegalSecretary compiles without a constructor.

  Its default constructor calls the Secretary() constructor.

Copyright 2008 by Pearson Education
33

Inheritance and fields
  Try to give lawyers $5000 for each year at the company:

public class Lawyer extends Employee {
 ...
 public double getSalary() {
 return super.getSalary() + 5000 * years;
 }
 ...
}

  Does not work; the error is the following:
Lawyer.java:7: years has private access in Employee
 return super.getSalary() + 5000 * years;
 ^

  Private fields cannot be directly accessed from
subclasses.
  One reason: So that subclassing can't break encapsulation.
  How can we get around this limitation?

Copyright 2008 by Pearson Education
34

Improved Employee code
Add an accessor for any field needed by the subclass.
public class Employee {
 private int years;

 public Employee(int initialYears) {
 years = initialYears;
 }

 public int getYears() {
 return years;
 }
 ...
}
public class Lawyer extends Employee {
 public Lawyer(int years) {
 super(years);
 }

 public double getSalary() {
 return super.getSalary() + 5000 * getYears();
 }
 ...
}

Copyright 2008 by Pearson Education
35

Revisiting Secretary
  The Secretary class currently has a poor solution.

  We set all Secretaries to 0 years because they do not get a
vacation bonus for their service.

  If we call getYears on a Secretary object, we'll always get 0.
  This isn't a good solution; what if we wanted to give some

other reward to all employees based on years of service?

  Redesign our Employee class to allow for a better
solution.

Copyright 2008 by Pearson Education
36

Improved Employee code
•  Let's separate the standard 10 vacation days from those

that are awarded based on seniority.
public class Employee {
 private int years;

 public Employee(int initialYears) {
 years = initialYears;
 }

 public int getVacationDays() {
 return 10 + getSeniorityBonus();
 }

 // vacation days given for each year in the company
 public int getSeniorityBonus() {
 return 2 * years;
 }
 ...
}

  How does this help us improve the Secretary?

Copyright 2008 by Pearson Education
37

Improved Secretary code
•  Secretary can selectively override getSeniorityBonus;

when getVacationDays runs, it will use the new version.
  Choosing a method at runtime is called dynamic binding.

public class Secretary extends Employee {
 public Secretary(int years) {
 super(years);
 }

 // Secretaries don't get a bonus for their years of service.
 public int getSeniorityBonus() {
 return 0;
 }

 public void takeDictation(String text) {
 System.out.println("Taking dictation of text: " + text);
 }
}

Copyright 2008 by Pearson Education
38

Polymorphism
  polymorphism: Ability for the same code to be used

with different types of objects and behave differently with
each.

  System.out.println can print any type of object.
  Each one displays in its own way on the console.

Copyright 2008 by Pearson Education
39

Coding with polymorphism
  A variable of type T can hold an object of any subclass of T.

 Employee ed = new Lawyer();

  You can call any methods from the Employee class on ed.

  When a method is called on ed, it behaves as a Lawyer.

 System.out.println(ed.getSalary()); // 50000.0
 System.out.println(ed.getVacationForm()); // pink

Copyright 2008 by Pearson Education
40

Polymorphism and
parameters

  You can pass any subtype of a parameter's type.
public class EmployeeMain {
 public static void main(String[] args) {
 Lawyer lisa = new Lawyer();
 Secretary steve = new Secretary();
 printInfo(lisa);
 printInfo(steve);
 }

 public static void printInfo(Employee empl) {
 System.out.println("salary: " + empl.getSalary());
 System.out.println("v.days: " + empl.getVacationDays());
 System.out.println("v.form: " + empl.getVacationForm());
 System.out.println();
 }
}

OUTPUT:
salary: 50000.0 salary: 50000.0
v.days: 15 v.days: 10
v.form: pink v.form: yellow

Copyright 2008 by Pearson Education
41

Polymorphism and arrays
  Arrays of superclass types can store any subtype as elements.

public class EmployeeMain2 {
 public static void main(String[] args) {
 Employee[] e = { new Lawyer(), new Secretary(),
 new Marketer(), new LegalSecretary() };
 for (int i = 0; i < e.length; i++) {
 System.out.println("salary: " + e[i].getSalary());
 System.out.println("v.days: " + e[i].getVacationDays
());

 System.out.println();
 }
 }
}

Output:
salary: 50000.0
v.days: 15
salary: 50000.0
v.days: 10

salary: 60000.0
v.days: 10

salary: 55000.0
v.days: 10

Copyright 2008 by Pearson Education
42

A polymorphism problem
  Suppose that the following four classes have been declared:

public class Foo {
 public void method1() {
 System.out.println("foo 1");
 }

 public void method2() {
 System.out.println("foo 2");
 }

 public String toString() {
 return "foo";
 }
}

public class Bar extends Foo {
 public void method2() {
 System.out.println("bar 2");
 }
}

Copyright 2008 by Pearson Education
43

A polymorphism problem
public class Baz extends Foo {
 public void method1() {
 System.out.println("baz 1");
 }
 public String toString() {
 return "baz";
 }
}
public class Mumble extends Baz {
 public void method2() {
 System.out.println("mumble 2");
 }
}

  What would be the output of the following client code?
Foo[] pity = {new Baz(), new Bar(), new Mumble(), new Foo()};
for (int i = 0; i < pity.length; i++) {
 System.out.println(pity[i]);
 pity[i].method1();
 pity[i].method2();
 System.out.println();
}

Copyright 2008 by Pearson Education
44

  Add classes from top (superclass) to bottom (subclass).

  Include all inherited methods.

Diagramming the classes

Copyright 2008 by Pearson Education
45

Finding output with tables

method Foo Bar Baz Mumble

method1

method2

toString

method Foo Bar Baz Mumble

method1 foo 1 baz 1

method2 foo 2 bar 2 mumble 2

toString foo baz

method Foo Bar Baz Mumble

method1 foo 1 foo 1 baz 1 baz 1

method2 foo 2 bar 2 foo 2 mumble 2

toString foo foo baz baz

Copyright 2008 by Pearson Education
46

Polymorphism answer
Foo[] pity = {new Baz(), new Bar(), new Mumble(), new Foo()};
for (int i = 0; i < pity.length; i++) {
 System.out.println(pity[i]);
 pity[i].method1();
 pity[i].method2();
 System.out.println();
}

  Output:
baz
baz 1
foo 2
foo
foo 1
bar 2
baz
baz 1
mumble 2
foo
foo 1
foo 2

