
Copyright 2010 by Pearson Education

Homework 8:
Critters

reading: HW8 spec

Copyright 2010 by Pearson Education
2

Copyright 2010 by Pearson Education
3

CSE 142 Critters
  Ant
  Bird
  Hippo
  Vulture
  Husky (creative)

  behavior:
  eat eating food
  fight animal fighting
  getColor color to display
  getMove movement
  toString letter to display

Copyright 2010 by Pearson Education
4

A Critter subclass
public class name extends Critter { ... }

public abstract class Critter {
 public boolean eat()
 public Attack fight(String opponent)
 // ROAR, POUNCE, SCRATCH
 public Color getColor()
 public Direction getMove()
 // NORTH, SOUTH, EAST, WEST, CENTER
 public String toString()
}

Copyright 2010 by Pearson Education
5

How the simulator works
  "Go" →	
 	
 loop:

  move each animal (getMove)
  if they collide, fight
  if they find food, eat

  Simulator is in control!
  getMove is one move at a time

  (no loops)

  Keep state (fields)
  to remember future moves

Next	

move?	

Copyright 2010 by Pearson Education
6

Development Strategy
  Do one species at a time

  in ABC order from easier to harder (Ant → Bird → ...)
  debug printlns

  Simulator helps you debug
  smaller width/height
  fewer animals
  "Tick" instead of "Go"
  "Debug" checkbox
  drag/drop to move animals

Copyright 2010 by Pearson Education
7

Critter exercise: Cougar
  Write a critter class Cougar:

Method Behavior
constructor public Cougar()

eat Always eats.
fight Always pounces.
getColor Blue if the Cougar has never fought; red if he

has.
getMove Walks west until he finds food; then walks east

until he finds food; then goes west and
repeats.

toString "C"

Copyright 2010 by Pearson Education
8

Ideas for state
  You must not only have the right state, but update that

state properly when relevant actions occur.

  Counting is helpful:
  How many total moves has this animal made?
  How many times has it eaten? Fought?

  Remembering recent actions in fields is helpful:
  Which direction did the animal move last?

  How many times has it moved that way?

  Did the animal eat the last time it was asked?
  How many steps has the animal taken since last eating?
  How many fights has the animal been in since last eating?

Copyright 2010 by Pearson Education
9

Cougar solution
import java.awt.*; // for Color

public class Cougar extends Critter {
 private boolean west;
 private boolean fought;

 public Cougar() {
 west = true;
 fought = false;
 }

 public boolean eat() {
 west = !west;
 return true;
 }

 public Attack fight(String opponent) {
 fought = true;
 return Attack.POUNCE;
 }

 ...

Copyright 2010 by Pearson Education
10

Cougar solution
 ...

 public Color getColor() {
 if (fought) {
 return Color.RED;
 } else {
 return Color.BLUE;
 }
 }

 public Direction getMove() {
 if (west) {
 return Direction.WEST;
 } else {
 return Direction.EAST;
 }
 }

 public String toString() {
 return "C";
 }
}

Copyright 2010 by Pearson Education
11

Critter exercise: Snake
Method Behavior

constructo
r

public Snake()

eat Never eats
fight always forfeits
getColor black

getMove 1 E, 1 S; 2 W, 1 S; 3 E, 1 S; 4 W, 1 S; 5
E, ...

toString "S"

Copyright 2010 by Pearson Education
12

Determining necessary fields
  Information required to decide what move to make?

  Direction to go in
  Length of current cycle
  Number of moves made in current cycle

  Remembering things you've done in the past:
  an int counter?
  a boolean flag?

Copyright 2010 by Pearson Education
13

Snake solution
import java.awt.*; // for Color
public class Snake extends Critter {
 private int length; // # steps in current horizontal cycle
 private int step; // # of cycle's steps already taken
 public Snake() {
 length = 1;
 step = 0;
 }

 public Direction getMove() {
 step++;
 if (step > length) { // cycle was just completed
 length++;
 step = 0;
 return Direction.SOUTH;
 } else if (length % 2 == 1) {
 return Direction.EAST;
 } else {
 return Direction.WEST;
 }
 }

 public String toString() {
 return "S";
 }
}

Copyright 2010 by Pearson Education
14

Critter exercise: Hipster
  All hipsters want to get to the bar with the cheapest PBR

  That bar is at a randomly-generated board location
(On the 60-by-50 world)

  They go north then east until they reach the bar

Copyright 2010 by Pearson Education
15

A flawed solution
import java.util.*; // for Random

public class Hipster extends Critter {
 private int cheapBarX;
 private int cheapBarY;

 public Hipster() {
 Random r = new Random();
 cheapBarX = r.nextInt(60);
 cheapBarY = r.nextInt(50);
 }

 public Direction getMove() {
 if (getY() != cheapBarY) {
 return Direction.NORTH;
 } else if (getX() != cheapBarX) {
 return Direction.EAST;
 } else {
 return Direction.CENTER;
 }
 }
}

  Problem: Each hipster goes to a different bar.
We want all hipsters to share the same bar location.

Copyright 2010 by Pearson Education
16

Static members
  static: Part of a class, rather than part of an object.

  Object classes can have static methods and fields.
  Not copied into each object; shared by all objects of that class.

class
state:
private static int staticFieldA
private static String staticFieldB
behavior:
public static void someStaticMethodC
()
public static void someStaticMethodD
()

object #1
state:
int field2
double field2

behavior:
public void method3
()
public int method4()
public void method5
()

object #2
state:
int field1
double field2

behavior:
public void method3
()
public int method4()
public void method5
()

object #3
state:
int field1
double field2

behavior:
public void method3
()
public int method4()
public void method5
()

Copyright 2010 by Pearson Education
17

Static fields
 private static type name;
 or,
 private static type name = value;

  Example:
 private static int theAnswer = 42;

  static field: Stored in the class instead of each object.
  A "shared" global field that all objects can access and modify.
  Like a class constant, except that its value can be changed.

Copyright 2010 by Pearson Education
18

Accessing static fields
  From inside the class where the field was declared:

 fieldName // get the value
 fieldName = value; // set the value

  From another class (if the field is public):
 ClassName.fieldName // get the value
 ClassName.fieldName = value; // set the value

  generally static fields are not public unless they are final

  Exercise: Modify the BankAccount class shown previously
so that each account is automatically given a unique ID.

  Exercise: Write the working version of Hipster.

Copyright 2010 by Pearson Education
19

Hipster solution
import java.util.*; // for Random

public class Hipster extends Critter {
 // static fields (shared by all hipsters)
 private static int cheapBarX = -1;
 private static int cheapBarY = -1;

 // object constructor/methods (replicated into each hipter)
 public Hipster() {
 if (cheapBarX < 0 || cheapBarY < 0) {
 Random r = new Random(); // the 1st hipster created
 cheapBarX = r.nextInt(60); // chooses the bar location
 cheapBarY = r.nextInt(50); // for all hipsters to go to
 }
 }

 public Direction getMove() {
 if (getY() != cheapBarY) {
 return Direction.NORTH;
 } else if (getX() != cheapBarX) {
 return Direction.EAST;
 } else {
 return Direction.CENTER;
 }
 }
}

Copyright 2010 by Pearson Education
20

Static methods
 // the same syntax you've already used for methods
 public static type name(parameters) {
 statements;
 }

  static method: Stored in a class, not in an object.

  Shared by all objects of the class, not replicated.

  Does not have any implicit parameter, this;
therefore, cannot access any particular object's fields.

  Exercise: Make it so that clients can find out how many
total BankAccount objects have ever been created.

Copyright 2010 by Pearson Education
21

BankAccount solution
public class BankAccount {
 // static count of how many accounts are created
 // (only one count shared for the whole class)
 private static int objectCount = 0;

 // clients can call this to find out # accounts created
 public static int getNumAccounts() {
 return objectCount;
 }

 // fields (replicated for each object)
 private String name;
 private int id;

 public BankAccount() {
 objectCount++; // advance the id, and
 id = objectCount; // give number to account
 }
 ...
 public int getID() { // return this account's id
 return id;
 }
}

Copyright 2010 by Pearson Education
22

Multi-class systems
  Most large software systems consist of many classes.

  One main class runs and calls methods of the others.

  Advantages:
  code reuse
  splits up the program logic into manageable chunks

Main Class #1
main

method1

method2

Class #2
method3

method5

Class #3
method4

method6

Copyright 2010 by Pearson Education
23

Summary of Java classes
  A class is used for any of the following in a large

program:

  a program : Has a main and perhaps other static methods.
  example: Bagels, Birthday, BabyNames, CritterMain
  does not usually declare any static fields (except final)

  an object class : Defines a new type of objects.
  example: Point, BankAccount, Date, Critter, Hipster
  declares object fields, constructor(s), and methods
  might declare static fields or methods, but these are less of a focus
  should be encapsulated (all fields and static fields private)

  a module : Utility code implemented as static methods.
  example: Math

