
Copyright 2010 by Pearson Education

Homework 8:
Critters

reading: HW8 spec

Copyright 2010 by Pearson Education
2

Copyright 2010 by Pearson Education
3

CSE 142 Critters
  Ant
  Bird
  Hippo
  Vulture
  Husky (creative)

  behavior:
  eat eating food
  fight animal fighting
  getColor color to display
  getMove movement
  toString letter to display

Copyright 2010 by Pearson Education
4

A Critter subclass
public class name extends Critter { ... }

public abstract class Critter {
 public boolean eat()
 public Attack fight(String opponent)
 // ROAR, POUNCE, SCRATCH
 public Color getColor()
 public Direction getMove()
 // NORTH, SOUTH, EAST, WEST, CENTER
 public String toString()
}

Copyright 2010 by Pearson Education
5

How the simulator works
  "Go" →	 	 loop:

  move each animal (getMove)
  if they collide, fight
  if they find food, eat

  Simulator is in control!
  getMove is one move at a time

  (no loops)

  Keep state (fields)
  to remember future moves

Next	
move?	

Copyright 2010 by Pearson Education
6

Development Strategy
  Do one species at a time

  in ABC order from easier to harder (Ant → Bird → ...)
  debug printlns

  Simulator helps you debug
  smaller width/height
  fewer animals
  "Tick" instead of "Go"
  "Debug" checkbox
  drag/drop to move animals

Copyright 2010 by Pearson Education
7

Critter exercise: Cougar
  Write a critter class Cougar:

Method Behavior
constructor public Cougar()

eat Always eats.
fight Always pounces.
getColor Blue if the Cougar has never fought; red if he

has.
getMove Walks west until he finds food; then walks east

until he finds food; then goes west and
repeats.

toString "C"

Copyright 2010 by Pearson Education
8

Ideas for state
  You must not only have the right state, but update that

state properly when relevant actions occur.

  Counting is helpful:
  How many total moves has this animal made?
  How many times has it eaten? Fought?

  Remembering recent actions in fields is helpful:
  Which direction did the animal move last?

  How many times has it moved that way?

  Did the animal eat the last time it was asked?
  How many steps has the animal taken since last eating?
  How many fights has the animal been in since last eating?

Copyright 2010 by Pearson Education
9

Cougar solution
import java.awt.*; // for Color

public class Cougar extends Critter {
 private boolean west;
 private boolean fought;

 public Cougar() {
 west = true;
 fought = false;
 }

 public boolean eat() {
 west = !west;
 return true;
 }

 public Attack fight(String opponent) {
 fought = true;
 return Attack.POUNCE;
 }

 ...

Copyright 2010 by Pearson Education
10

Cougar solution
 ...

 public Color getColor() {
 if (fought) {
 return Color.RED;
 } else {
 return Color.BLUE;
 }
 }

 public Direction getMove() {
 if (west) {
 return Direction.WEST;
 } else {
 return Direction.EAST;
 }
 }

 public String toString() {
 return "C";
 }
}

Copyright 2010 by Pearson Education
11

Critter exercise: Snake
Method Behavior

constructo
r

public Snake()

eat Never eats
fight always forfeits
getColor black

getMove 1 E, 1 S; 2 W, 1 S; 3 E, 1 S; 4 W, 1 S; 5
E, ...

toString "S"

Copyright 2010 by Pearson Education
12

Determining necessary fields
  Information required to decide what move to make?

  Direction to go in
  Length of current cycle
  Number of moves made in current cycle

  Remembering things you've done in the past:
  an int counter?
  a boolean flag?

Copyright 2010 by Pearson Education
13

Snake solution
import java.awt.*; // for Color
public class Snake extends Critter {
 private int length; // # steps in current horizontal cycle
 private int step; // # of cycle's steps already taken
 public Snake() {
 length = 1;
 step = 0;
 }

 public Direction getMove() {
 step++;
 if (step > length) { // cycle was just completed
 length++;
 step = 0;
 return Direction.SOUTH;
 } else if (length % 2 == 1) {
 return Direction.EAST;
 } else {
 return Direction.WEST;
 }
 }

 public String toString() {
 return "S";
 }
}

Copyright 2010 by Pearson Education
14

Critter exercise: Hipster
  All hipsters want to get to the bar with the cheapest PBR

  That bar is at a randomly-generated board location
(On the 60-by-50 world)

  They go north then east until they reach the bar

Copyright 2010 by Pearson Education
15

A flawed solution
import java.util.*; // for Random

public class Hipster extends Critter {
 private int cheapBarX;
 private int cheapBarY;

 public Hipster() {
 Random r = new Random();
 cheapBarX = r.nextInt(60);
 cheapBarY = r.nextInt(50);
 }

 public Direction getMove() {
 if (getY() != cheapBarY) {
 return Direction.NORTH;
 } else if (getX() != cheapBarX) {
 return Direction.EAST;
 } else {
 return Direction.CENTER;
 }
 }
}

  Problem: Each hipster goes to a different bar.
We want all hipsters to share the same bar location.

Copyright 2010 by Pearson Education
16

Static members
  static: Part of a class, rather than part of an object.

  Object classes can have static methods and fields.
  Not copied into each object; shared by all objects of that class.

class
state:
private static int staticFieldA
private static String staticFieldB
behavior:
public static void someStaticMethodC
()
public static void someStaticMethodD
()

object #1
state:
int field2
double field2

behavior:
public void method3
()
public int method4()
public void method5
()

object #2
state:
int field1
double field2

behavior:
public void method3
()
public int method4()
public void method5
()

object #3
state:
int field1
double field2

behavior:
public void method3
()
public int method4()
public void method5
()

Copyright 2010 by Pearson Education
17

Static fields
 private static type name;
 or,
 private static type name = value;

  Example:
 private static int theAnswer = 42;

  static field: Stored in the class instead of each object.
  A "shared" global field that all objects can access and modify.
  Like a class constant, except that its value can be changed.

Copyright 2010 by Pearson Education
18

Accessing static fields
  From inside the class where the field was declared:

 fieldName // get the value
 fieldName = value; // set the value

  From another class (if the field is public):
 ClassName.fieldName // get the value
 ClassName.fieldName = value; // set the value

  generally static fields are not public unless they are final

  Exercise: Modify the BankAccount class shown previously
so that each account is automatically given a unique ID.

  Exercise: Write the working version of Hipster.

Copyright 2010 by Pearson Education
19

Hipster solution
import java.util.*; // for Random

public class Hipster extends Critter {
 // static fields (shared by all hipsters)
 private static int cheapBarX = -1;
 private static int cheapBarY = -1;

 // object constructor/methods (replicated into each hipter)
 public Hipster() {
 if (cheapBarX < 0 || cheapBarY < 0) {
 Random r = new Random(); // the 1st hipster created
 cheapBarX = r.nextInt(60); // chooses the bar location
 cheapBarY = r.nextInt(50); // for all hipsters to go to
 }
 }

 public Direction getMove() {
 if (getY() != cheapBarY) {
 return Direction.NORTH;
 } else if (getX() != cheapBarX) {
 return Direction.EAST;
 } else {
 return Direction.CENTER;
 }
 }
}

Copyright 2010 by Pearson Education
20

Static methods
 // the same syntax you've already used for methods
 public static type name(parameters) {
 statements;
 }

  static method: Stored in a class, not in an object.

  Shared by all objects of the class, not replicated.

  Does not have any implicit parameter, this;
therefore, cannot access any particular object's fields.

  Exercise: Make it so that clients can find out how many
total BankAccount objects have ever been created.

Copyright 2010 by Pearson Education
21

BankAccount solution
public class BankAccount {
 // static count of how many accounts are created
 // (only one count shared for the whole class)
 private static int objectCount = 0;

 // clients can call this to find out # accounts created
 public static int getNumAccounts() {
 return objectCount;
 }

 // fields (replicated for each object)
 private String name;
 private int id;

 public BankAccount() {
 objectCount++; // advance the id, and
 id = objectCount; // give number to account
 }
 ...
 public int getID() { // return this account's id
 return id;
 }
}

Copyright 2010 by Pearson Education
22

Multi-class systems
  Most large software systems consist of many classes.

  One main class runs and calls methods of the others.

  Advantages:
  code reuse
  splits up the program logic into manageable chunks

Main Class #1
main

method1

method2

Class #2
method3

method5

Class #3
method4

method6

Copyright 2010 by Pearson Education
23

Summary of Java classes
  A class is used for any of the following in a large

program:

  a program : Has a main and perhaps other static methods.
  example: Bagels, Birthday, BabyNames, CritterMain
  does not usually declare any static fields (except final)

  an object class : Defines a new type of objects.
  example: Point, BankAccount, Date, Critter, Hipster
  declares object fields, constructor(s), and methods
  might declare static fields or methods, but these are less of a focus
  should be encapsulated (all fields and static fields private)

  a module : Utility code implemented as static methods.
  example: Math

