Building Java Programs

Chapter 8

Lecture 8-2: Object Behavior (Methods)
and Constructors, Encapsulation, this

reading: 8.2 - 8.3, 8.5 - 8.6
self-checks: #13-17
exercises: #5

Copyright 2010 by Pearson Education

T THINK WE SHOULD
GVE IT ANOTHER SHOT.

WE SHOULD BREAK
UR AND I (AN

Q (PRDVE T

| OUR RELATIONSHIP
1

| ‘_\

Copyright 2010 by Pearson Education

O‘i

MAYRE YOURE RIGHT.
[T KNEW DATA WaUD CONVINCE You.

NO, T JUST THINK L CAN DO
BEMER THAN SOMEONE WHO
DOESN'T LABELHER AXES,

9

e

Why objects?

* Primitive types don't model complex concepts well
» Cost is a double. What's a person?
» Classes are a way to define new types
 Many objects can be made from those types

» Values of the same type often are used in similar ways
 Promote code reuse through instance methods

Copyright 2010 by Pearson Education

o aanml

—

g

Recall: Instance methods

* instance method (or object method): Exists inside
each object of a class and gives behavior to each object.

public type name (parameters) {
statements;

}

* same syntax as static methods, but without static keyword

Example:

Pl e enidvE o W
System.out.println ("HELLO THERE!");

}

Copyright 2010 by Pearson Education

g

Point objects w/ method

» Each point object has its own copy of the distanceFromOrigin
method, which operates on that object's state:

pl

Point pl = new Point(); v
Pliseaa xi 7 |y)
Dl

Point p2 = new Point();

> public double distanceFromOrigin () {
p2- = 3: // this code can see pl's x and y
oy return i Mathisgrt (e s byt

}

pl.distanceFromOrigin() ;
p2.distanceFromOrigin() ;

x| 4 3
O]

pubilichdouble distancckromOrigin (v
// this code can see p2's x and y
=D e RN e S N B o At S BT A Y

Copyright 2010 by Pearson Education

—

Kinds of methods

°* accessor: A method that lets clients examine object
state.

e Examples: distance, distanceFromOrigin
» often has a non-void return type

-

* mutator: A method that modifies an object's state.
e Examples: setlLocation, translate

Copyright 2010 by Pearson Education

I

’/‘7¢”””dﬁWK//-W. . .
Printing objects

e By default, Java doesn't know how to print objects:

Point p = new Point():;
P =i
p.y = 7;

System.out.println("p is " + p); // p is Point@9%e8c34

// better, but cumbersome; p is (10, 7)
Systemoutiprintiniipits @b pox e Dy wa ety

// desired behavior
S el el e e e e U D e ((EG S)

Copyright 2010 by Pearson Education

- —

he toS

g

-ring method

tells Java how to convert an object into a String

Pointipl = new Pornt il 2
ShAsEve i o e e el R e e

// the above code is really calling the following:
Systemoubiprineinttpla B b v reoString ()) ;

* Every class has a toString, even if it isn't in your code.
» Default: class's name @ object's memory address (base 16)

Point@9e8c34

Copyright 2010 by Pearson Education

coString syntax

Srbi i S e e e AR A e (Y A
code that returns a String representing this object;

« Method name, return, and parameters must match exactly.

» Example:

// Returns a String representing this Point.

pubbaes St ranage b oSt renepla
return M R Ry e

}

Copyright 2010 by Pearson Education

- —

-

Variable names and scope

o Usually it is illegal to have two variables in the same
scope with the same name.

vabErewala s sWwRe g

TNE X
Ay s

public void setLocation (int newX, 1nt newY) {
X = newX;
Yy = newy;

}

» The parameters to setLocation are named newX and newY to
be distinct from the object's fields x and v.

10
Copyright 2010 by Pearson Education

Variable shadowing

* An instance method parameter can have the same name
as one of the object's fields:

-

// this is legal
phb s wvendwoo e wensinaa s s Sr e

}

» Fields x and y are shadowed by parameters with same names.

* Any setLocation code that refers to x or y will use the
parameter, not the field.

11

Copyright 2010 by Pearson Education

I

 —
Avoiding shadowing w/

oo e e i et e e T A
AR R 4
Tty

publie vord ' setbocoblontint Xy Tnt vy

thiysvxvssy
this.y = y;

e Inside the setLocation method,
» When this.x is seen, the field x is used.
» When x is seen, the parameter x is used.

Copyright 2010 by Pearson Education

el =

12

Eel =

* this : A reference to the implicit parameter.
o implicit parameter: object on which a method is called

e Syntax for using this:

 To refer to a field:
this.field

e To call a method:
this.method (parameters) ;

e To call a constructor from another constructor:
this (parameters) ;

Copyright 2010 by Pearson Education

13

Object initialization:
constructors

reading: 8.3

Initializing objects

e Currently it takes 3 lines to create a Point and initialize

g

It:

icfolNals el el =V 2o R Bami T

p.ox = 3=

p.y = 8; // tedious

» We'd rather specify the fields' initial values at the start:

Point p = new Point (3, 8); // desired; doesn't work (yet)

 We are able to this with most types of objects in Java.

A%
Copyright 2010 by Pearson Education

— e

Constructors

* constructor: Initializes the state of new objects.

public type (parameters) |
statements;

}

* runs when the client uses the new keyword

* no return type is specified;
it implicitly "returns"” the new object being created

o If a class has no constructor, Java gives it a default constructor
with no parameters that sets all fields to O.

16
Copyright 2010 by Pearson Education

: I
 —
Constructor example

pubilirevelass Porps
Taby e
LEE vy

// Constructs a Point at the given x/y location.
public Point(int initialX, int initialY) {

X = initialX;

Yy = initialyY;

public void translateint idx - dnt ady) o
e e b
Y = ¥t ayy

%74
Copyright 2010 by Pearson Education

- —

-

Tracing a constructor call

e What happens when the following call is made?

POaE Dl = new Pounb e

() |
%

jorcieEaN et s tia y el AU Al ik a\s Y pue MRy G B g s g T i = 1 BN G P
X initialX;
Y initialyY;

}

pubiv e vordwbransEatetant el n b by
x += dx;
Voik=dye

18
Copyright 2010 by Pearson Education

o aanml

— -

g

Common constructor bugs

1. Re-declaring fields as local variables ("shadowing"):

pubbwes Powrns it nibamrn s avanlses ke i e
IRt X anat gl
int y = 1nitialyY;

}

» This declares local variables with the same name as the fields,
rather than storing values into the fields. The fields remain O.

2. Accidentally giving the constructor a return type:
il e ot d Tt ormeBicih annE e MG e)
X = 1nitialX;
Vo= ey
}

» This is actually not a constructor, but a method named pPoint

19
Copyright 2010 by Pearson Education

I

Client code, version 3

NG SN e A e P M T S T)
P EneE e e v e e EnE e
// create two Point objects
Point pl = new Point (5, 2);
Point p2 = new Point (4, 3);

// print each point
Sybem solib e b G e R e e L e e e e
SystemioubyprintEn i pys v Dus e b e s o g

// move p2 and then print it again
p2.translate (2, 4);

ShAsaE It oY b hn ohau s s ot N s Y R e e R i e
}
}
OUTPUT:
Dl BN
Pt (a4
p2: (6, 7)
20

Copyright 2010 by Pearson Education

- —

Multiple constructors

* A class can have multiple constructors.
« Each one must accept a unique set of parameters.

g

* Exercise: Write a Point constructor with no parameters
that initializes the point to (0, 0).

// Constructs a new point at (0, 0).
public Point ()

x = 0;

Yo Uy

20
Copyright 2010 by Pearson Education

///""“""\ A

- —

Multiple constructors

e It is legal to have more than one constructor in a class.
» The constructors must accept different parameters.

g

Dbl vewelasiewviRiaspnpad
ENNEYA TSR M S A
private int y;

public Point () {

x =0y
Yy =0,
}
PNANSHEAE e e e e e s e I e A e A e)
S p il e
N e

}

22
Copyright 2010 by Pearson Education

I

L —
Constructors and this

e One constructor can call another using this:

pub e elassiPornt |
Dl vabe Tk o
B e

Uil ePornt Wi
this (0, 0); // calls the (x, y) constructor

} \A\‘

pilblie Eerran Eial e iy
this.x 3>
this.y V&

23
Copyright 2010 by Pearson Education

/ g
Encapsulation

 encapsulation: Hiding implementation details of an
object from its clients.

» Encapsulation provides abstraction.
« separates external view (behavior) from internal view (state)

» Encapsulation protects the integrity of an object's data.

e I

U0 OUTRUT

Measure="rs
Resistor Voltage .ﬁ

Here Here

Copyright 2010 by Pearson Education

e

/< — [| Ai | |
Private fields
» A field can be declared private.
* No code outside the class can access or change it.

private type name;

» Examples:

private nt ud:
private String name;

* Client code sees an error when accessing private fields:

PointMain.‘java:1ll: x has private access in Point
System.out.println("pl is (" + pl.x + ", " + pl.y + ")");

A

Copyright 2010 by Pearson Education

25

I

’/47¢¢””’ﬁﬁmfg[. .
Accessing private state

* We can provide methods to get and/or set a field's value:

// A "read-only" access to the x field ("accessor")
publreintgetx () o
Ferl e

}

// Allows clients to change the x field ("mutator")
public void setX(i1nt newX) {
X = newX;

}
o Client code will look more like this:
Svetemiyoubivprinbinpla vt eplogeEX () el getY ()

")");
pl.setX(14) ;

26
Copyright 2010 by Pearson Education

I
Point class, version 4

// A Point object represents an (x, y) location.
eAVE SN R M I S AR e U SO S T A

private int x;

private int y;

public Point(int initialX, int initialY) {

Xo=oinitigalXs
y = initialY;
}
vublicrvdonblevdistanceRromOrigin () i

8 AND VAT ENUAIEE S i a9 b M A e A
}

public int getX() {
return x;
}

public int getY() {
return y;

}

public void setLocation(int newX, int newY) {
X = newx;
AV oY =y

}

058l oMM K e o i i oy v A s e Nl =) U Mg s e S B alimiid s v M
v dixe

NG

X
Y
}

20
Copyright 2010 by Pearson Education

I

Client code, version 4

public class PointMaind {
oI loNE Mo s Mon e vdou e Bt = Fat o e o svab s Yo M Al = hiajo sy o
// create two Point objects
Point pl = new Point (5, 2);
XS B A W @ WA A 0 =N A =Y 0) i v 20 ML A

// print each point
SyskEemionbiprin b it pl e it el geEX () Rl ge Y ()
SysbemveontiprETn it i p 2 ge X e s p 2 ga e Y (e e

// move p2 and then print it again
p2.translate (2, 4);
Sy o renvontvprantlnipoaray v 2agae it Eaivaivir v p 2 e ge b Y (v iyt

}

OUTPUT:

piliinevabiaviy
P2 S e 3
SRR N O G S

28
Copyright 2010 by Pearson Education

sl

e — —_—

/

Benefits of encapsulation

* Provides abstraction between an object and its clients.

* Protects an object from unwanted access by clients.
» A bank app forbids a client to change an Account's balance.

'y

* Allows you to change the class implementation.

* Point could be rewritten to use polar coordinates
(radius r, angle @), but with the same methods. .

 J

* Allows you to constrain objects' state (invariants).
» Example: Only allow Points with non-negative coordinates.

29
Copyright 2010 by Pearson Education

