
Copyright 2010 by Pearson Education

Building Java Programs

Chapter 8
Lecture 8-2: Object Behavior (Methods)
and Constructors, Encapsulation, this

reading: 8.2 - 8.3, 8.5 – 8.6
self-checks: #13-17

exercises: #5

Copyright 2010 by Pearson Education
2

Copyright 2010 by Pearson Education
3

Why objects?
  Primitive types don't model complex concepts well

  Cost is a double. What's a person?
  Classes are a way to define new types
  Many objects can be made from those types

  Values of the same type often are used in similar ways
  Promote code reuse through instance methods

Copyright 2010 by Pearson Education
4

Recall: Instance methods
  instance method (or object method): Exists inside

each object of a class and gives behavior to each object.

 public type name(parameters) {
 statements;
 }

  same syntax as static methods, but without static keyword

 Example:

 public void shout() {
 System.out.println("HELLO THERE!");
 }

Copyright 2010 by Pearson Education
5

public double distanceFromOrigin() {
 // this code can see p2's x and y
 return Math.sqrt(x * x + y * y);
}

  Each Point object has its own copy of the distanceFromOrigin
method, which operates on that object's state:

Point p1 = new Point();
p1.x = 7;
p1.y = 2;

Point p2 = new Point();
p2.x = 4;
p2.y = 3;

p1.distanceFromOrigin();
p2.distanceFromOrigin();

public double distanceFromOrigin() {
 // this code can see p1's x and y
 return Math.sqrt(x * x + y * y);
}

Point objects w/ method

x 7 y 2

x 4 y 3
p2

p1

Copyright 2010 by Pearson Education
6

Kinds of methods
  accessor: A method that lets clients examine object

state.
  Examples: distance, distanceFromOrigin
  often has a non-void return type

  mutator: A method that modifies an object's state.
  Examples: setLocation, translate

Copyright 2010 by Pearson Education
7

Printing objects
  By default, Java doesn't know how to print objects:

Point p = new Point();
p.x = 10;
p.y = 7;
System.out.println("p is " + p); // p is Point@9e8c34

// better, but cumbersome; p is (10, 7)
System.out.println("p is (" + p.x + ", " + p.y + ")");

// desired behavior
System.out.println("p is " + p); // p is (10, 7)

Copyright 2010 by Pearson Education
8

The toString method
tells Java how to convert an object into a String

 Point p1 = new Point(7, 2);
 System.out.println("p1: " + p1);

 // the above code is really calling the following:
 System.out.println("p1: " + p1.toString());

  Every class has a toString, even if it isn't in your code.
  Default: class's name @ object's memory address (base 16)

 Point@9e8c34

Copyright 2010 by Pearson Education
9

toString syntax
 public String toString() {
 code that returns a String representing this object;
 }

  Method name, return, and parameters must match exactly.

  Example:
 // Returns a String representing this Point.
 public String toString() {
 return "(" + x + ", " + y + ")";
 }

Copyright 2010 by Pearson Education
10

Variable names and scope
  Usually it is illegal to have two variables in the same

scope with the same name.

 public class Point {
 int x;
 int y;
 ...

 public void setLocation(int newX, int newY) {
 x = newX;
 y = newY;
 }
 }

  The parameters to setLocation are named newX and newY to
be distinct from the object's fields x and y.

Copyright 2010 by Pearson Education
11

Variable shadowing
  An instance method parameter can have the same name

as one of the object's fields:

 // this is legal
 public void setLocation(int x, int y) {
 ...
 }

  Fields x and y are shadowed by parameters with same names.
  Any setLocation code that refers to x or y will use the

parameter, not the field.

Copyright 2010 by Pearson Education
12

Avoiding shadowing w/ this
 public class Point {
 int x;
 int y;

 ...

 public void setLocation(int x, int y) {
 this.x = x;
 this.y = y;
 }
 }

  Inside the setLocation method,
  When this.x is seen, the field x is used.
  When x is seen, the parameter x is used.

Copyright 2010 by Pearson Education
13

this
  this : A reference to the implicit parameter.

  implicit parameter: object on which a method is called

  Syntax for using this:

  To refer to a field:
 this.field

  To call a method:
 this.method(parameters);

  To call a constructor from another constructor:
 this(parameters);

Copyright 2010 by Pearson Education
14

Object initialization:
constructors

reading: 8.3

Copyright 2010 by Pearson Education
15

Initializing objects
  Currently it takes 3 lines to create a Point and initialize

it:
Point p = new Point();
p.x = 3;
p.y = 8; // tedious

  We'd rather specify the fields' initial values at the start:
Point p = new Point(3, 8); // desired; doesn't work (yet)

  We are able to this with most types of objects in Java.

Copyright 2010 by Pearson Education
16

Constructors
  constructor: Initializes the state of new objects.

 public type(parameters) {
 statements;
 }

  runs when the client uses the new keyword

  no return type is specified;
it implicitly "returns" the new object being created

  If a class has no constructor, Java gives it a default constructor
with no parameters that sets all fields to 0.

Copyright 2010 by Pearson Education
17

Constructor example
public class Point {
 int x;
 int y;

 // Constructs a Point at the given x/y location.
 public Point(int initialX, int initialY) {
 x = initialX;
 y = initialY;
 }

 public void translate(int dx, int dy) {
 x = x + dx;
 y = y + dy;
 }

 ...
}

Copyright 2010 by Pearson Education
18

Tracing a constructor call
  What happens when the following call is made?

Point p1 = new Point(7, 2);

public Point(int initialX, int initialY) {
 x = initialX;
 y = initialY;
}

public void translate(int dx, int dy) {
 x += dx;
 y += dy;
}

x
y

p1

Copyright 2010 by Pearson Education
19

Common constructor bugs
1. Re-declaring fields as local variables ("shadowing"):

 public Point(int initialX, int initialY) {
 int x = initialX;
 int y = initialY;
 }

  This declares local variables with the same name as the fields,
rather than storing values into the fields. The fields remain 0.

2. Accidentally giving the constructor a return type:
 public void Point(int initialX, int initialY) {
 x = initialX;
 y = initialY;
 }

  This is actually not a constructor, but a method named Point

Copyright 2010 by Pearson Education
20

Client code, version 3
public class PointMain3 {
 public static void main(String[] args) {
 // create two Point objects
 Point p1 = new Point(5, 2);
 Point p2 = new Point(4, 3);

 // print each point
 System.out.println("p1: (" + p1.x + ", " + p1.y + ")");
 System.out.println("p2: (" + p2.x + ", " + p2.y + ")");

 // move p2 and then print it again
 p2.translate(2, 4);
 System.out.println("p2: (" + p2.x + ", " + p2.y + ")");
 }
}

OUTPUT:
p1: (5, 2)
p2: (4, 3)
p2: (6, 7)

Copyright 2010 by Pearson Education
21

Multiple constructors
  A class can have multiple constructors.

  Each one must accept a unique set of parameters.

  Exercise: Write a Point constructor with no parameters
that initializes the point to (0, 0).

// Constructs a new point at (0, 0).
public Point() {
 x = 0;
 y = 0;
}

Copyright 2010 by Pearson Education
22

Multiple constructors
  It is legal to have more than one constructor in a class.

  The constructors must accept different parameters.

 public class Point {
 private int x;
 private int y;

 public Point() {
 x = 0;
 y = 0;
 }

 public Point(int initialX, int initialY) {
 x = initialX;
 y = initialY;
 }

 ...
 }

Copyright 2010 by Pearson Education
23

Constructors and this
  One constructor can call another using this:

 public class Point {
 private int x;
 private int y;

 public Point() {
 this(0, 0); // calls the (x, y) constructor
 }

 public Point(int x, int y) {
 this.x = x;
 this.y = y;
 }

 ...
 }

Copyright 2010 by Pearson Education
24

Encapsulation
  encapsulation: Hiding implementation details of an

object from its clients.

  Encapsulation provides abstraction.
  separates external view (behavior) from internal view (state)

  Encapsulation protects the integrity of an object's data.

Copyright 2010 by Pearson Education
25

Private fields
  A field can be declared private.

  No code outside the class can access or change it.

 private type name;

  Examples:

 private int id;
 private String name;

  Client code sees an error when accessing private fields:
PointMain.java:11: x has private access in Point
System.out.println("p1 is (" + p1.x + ", " + p1.y + ")");
 ^

Copyright 2010 by Pearson Education
26

Accessing private state
  We can provide methods to get and/or set a field's value:

 // A "read-only" access to the x field ("accessor")
 public int getX() {
 return x;
 }

 // Allows clients to change the x field ("mutator")
 public void setX(int newX) {
 x = newX;
 }

  Client code will look more like this:

 System.out.println("p1: (" + p1.getX() + ", " + p1.getY() +
")");

 p1.setX(14);

Copyright 2010 by Pearson Education
27

Point class, version 4
// A Point object represents an (x, y) location.
public class Point {
 private int x;
 private int y;

 public Point(int initialX, int initialY) {
 x = initialX;
 y = initialY;
 }

 public double distanceFromOrigin() {
 return Math.sqrt(x * x + y * y);
 }

 public int getX() {
 return x;
 }

 public int getY() {
 return y;
 }

 public void setLocation(int newX, int newY) {
 x = newX;
 y = newY;
 }

 public void translate(int dx, int dy) {
 x = x + dx;
 y = y + dy;
 }
}

Copyright 2010 by Pearson Education
28

Client code, version 4
public class PointMain4 {
 public static void main(String[] args) {
 // create two Point objects
 Point p1 = new Point(5, 2);
 Point p2 = new Point(4, 3);

 // print each point
 System.out.println("p1: (" + p1.getX() + ", " + p1.getY() + ")");
 System.out.println("p2: (" + p2.getX() + ", " + p2.getY() + ")");

 // move p2 and then print it again
 p2.translate(2, 4);
 System.out.println("p2: (" + p2.getX() + ", " + p2.getY() + ")");
 }
}

OUTPUT:
p1 is (5, 2)
p2 is (4, 3)
p2 is (6, 7)

Copyright 2010 by Pearson Education
29

Benefits of encapsulation
  Provides abstraction between an object and its clients.

  Protects an object from unwanted access by clients.
  A bank app forbids a client to change an Account's balance.

  Allows you to change the class implementation.
  Point could be rewritten to use polar coordinates

(radius r, angle θ), but with the same methods.

  Allows you to constrain objects' state (invariants).
  Example: Only allow Points with non-negative coordinates.

