Building Java Programs

Chapter 8
Lecture 8-1: Classes and Objects

reading: 8.1 - 8.2

Copyright 2010 by Pearson Education

I

THE WORLD SEEN BY AN "OBTECT -ORENTED PROGRAMMER.
\ o ———————————

Pri vacy Mntau_bdtobh

Trdoor Session Todinl per

‘Wknm‘?m»du Smjldon

Thir o~
st Quencher Container [V:sior Mowtlor Tnterf

Copyright 2010 by Pearson Education

I

- —

A programming problem

-lofx|

* Given a file of cities' (X, y) coordinates, File View Help

which begins with the number of cities:

(50, 20)

6
50 20 (10/72)
90 60
e v AW
74 98
5 136
150 91

(80, 60)

{150, 91)

(74,88)

0, 0)

* Write a program to draw the cities on a DrawingPanel, then
simulates an earthquake that turns all cities red that are within a
given radius:

Epicenter x? 100
Epicenter y? 100
Affected radius? 75

Copyright 2010 by Pearson Education

Scanner input
TN O
PRtV s oords
TRt oo rds

for (int i =
RO Gereies
VAS oeaaa fehiah

A bad solution

new Scanner (new File("cities.txt"));
ENpUtanexXt IRt

= new 1nt[cityCount];

G
]
]

new int[cityCount];

T ebvConnt i EE)

= PPN e e e

Sghers e =S anitian R BV

o parallel arrays: 2+ arrays with related data at same indexes.
« Considered poor style.

Copyright 2010 by Pearson Education

L —

Observations

» The data in this problem is a set of points. . ven ten
e It would be better stored as Point objects. (50,20

=] 3

(80, 60)

e A Point would store a city's x/y data. 10/

{150, 91)

(74,88)

(5, 186)

» We could compare distances between Points
to see whether the earthquake hit a given city.

0, 0)

Each point would know how to draw itself.

The overall program would be shorter and cleaner.

Copyright 2010 by Pearson Education

Objects

* object: An entity that contains data and behavior.
» data: variables inside the object
» behavior: methods inside the object

0,0
« You interact with the methods; (behavor) Dﬁﬁj
the data is hidden in the object.

- A class is a type of objects.

e Constructing (creating) an object:
Type objectName = new Type (parameters) ;

e Calling an object's method:
objectName. methodName (parameters) ;

Copyright 2010 by Pearson Education

Fields
(state)

I

 —
Clients of objects

o client program: A program that uses objects.
« Example: Shapes is a client of DrawingPanel and Graphics.

DrawingPanel.java (class)

Shapes.java (client program) « >
public class Shapes {
13975 P AT ACME AN AR & AV S0 S B Y6 A M A
new DrawingPanel (...)

public class DrawingPanel {

}

\
new DrawingPanel (...)
AT g \\
) \

® O O CSE.. O 0O CsSE..

Copyright 2010 by Pearson Education

— el

The Object Concept

* procedural programming: Programs that perform their
behavior as a series of steps to be carried out

*» object-oriented programming (OOP): Programs that
perform their behavior as interactions between objects

» Takes practice to understand the object concept

Copyright 2010 by Pearson Education

el

e

Classes and objects

e class: A program entity that represents either:
1. A program / module, or
2. A template for a new type of objects.

» The DrawingPanel class is a template for creating
DrawingPanel objects.

*» object: An instance of a class. An entity that combines
state and behavior.

» object-oriented programming (OOP): Programs that
perform their behavior as interactions between objects.

Copyright 2010 by Pearson Education

Copyright 2010 by Pearson Education

SR
/”
iPod blueprint
state:

current song

volume

battery life

behavior:

power on/off

change station/song

change volume

choose random song

creates
iPod #1 iPod #2 iPod #3
state: state: state:
song = "1,000,000 Miles" song = "Letting You" song = "Discipline"
volume = 17 volume =9 volume = 24
battery life = 2.5 hrs | ‘ battery life = 3.41 hrs_| : battery life = 1.8 hrs
behavior: ™ behavior: ™ 4 behavior:

power on/off power on/off power on/off
change station/song change station/song change station/song
change volume change volume change volume
choose random song ' choose random song choose random song

10

I

-, = _
Abstraction

* abstraction: A distancing between ideas and details.
» We can use objects without knowing how they work.

* abstraction in an iPod:
* You understand its external behavior (buttons, screen).
* You don't understand its inner details, and you don't need to.

14—
J
o R4 Re3
22K
z ‘
o~ B 2
g8 07 SEpE e S =
5, 20 o S Mt ' RES 3 :
R RS g - am3 e
SR - i ‘ |o "
S R ®) o .
\.Sg?}_ = P g P o /
| SPRE SO — 4£Add Mea Reb
| PF= = Resistor Voltage ™
\ Here Here L

AR
Copyright 2010 by Pearson Education

Our task

* In the following slides, we will implement a point class
as a way of learning about defining classes.

We will define a type of objects named Point.

Each point object will contain x/y data called fields.

» Each point object will contain behavior called methods.
» Client programs will use the point objects.

12
Copyright 2010 by Pearson Education

e —

e

= ObjEC€S (desired)

Peins e ey S ites =
Point p2 = new Point(); // origin, (0, 0)

e Data in each pPoint object:

name Description
X the point's x-
coordinate
y the point's y-
coordinate

» Methods in each Point object:

Method name

Description

setLocation (X, Y)

sets the point's x and y to the given values

translate (dX,
dy)

adjusts the point's x and y by the given
amounts

distance (P)

how far away the point is from point p

draw (@)

displays the point on a drawing panel

13

—Copyrigt20 0oy Pearsom Education

Point class
state:
AT N SN
behavior:
SebhoCa b T oM I E M vty
a0 GRS M= By =1 MY Y QUM S b A B s v

distance (Point p)
draw (Graphics qg)

- class as blueprint

-

Point object #1

state:
X = b, y = =2

behavior:
setLocation (int x,
v)

translate (int dx,
dy)

distance (Point p)
draw (Graphics qg)

int

int

Point object #2

state:

X = -245, 1:8:9%

behavior:
setLocation (int X,
Y)

translate (int dx,
dy)

distance (Point p)
draw (Graphics qg)

y:

A% g

A

Point object #3

state:

DGRt o

behavior:
setLocation (int X,
Y)

translate (int dx,
dy)

distance (Point p)
draw (Graphics qg)

y = 42

int

R A

» The class (blueprint) will describe how to create objects.
» Each object will contain its own data and methods.

Copyright 2010 by Pearson Education

14

Object state:
Fields

reading: 8.2

Point class, version 1

Db e e S S R O
int x;
int y;

-

J

e Save this code into a file named Point.java.

* The above code creates a new type named Point.

 Each point object contains two pieces of data:
« an int named x, and
e an int named y.

 Point objects do not contain any behavior (yet).

16
Copyright 2010 by Pearson Education

Fields

» field: A variable inside an object that is part of its state.
» Each object has its own copy of each field.

* Declaration syntax:

type name;

» Example:

pubEevelEasai S hdem
String name; // each Student object has a
double gpa; // name and gpa field

%74
Copyright 2010 by Pearson Education

///""“""\ A

% Accessing fields

e Other classes can access/modify an object's fields.

g

e access: variable.field
e modify: variable.field = value;
» Example:
Yo VI A s O B Y N SR O A Y e
Point p2 = new Point();
Sysktem:outiprintin(ithe ix coord 95 "t plax): // access
p2.y = 13; // modify

18

Copyright 2010 by Pearson Education

—

>

/ A class and its client

* Point.java is not, by itself, a runnable program.
» A class can be used by client programs.

PointMain. java (client program)
public class PointMain {
gl WM e A B su Moo s Male As d M|
Point pl = new Point();

pl.x 7; \\\

pl.y 25

Point p2 = new Point();
p2.x

4;
p2.y 3

-
-

Copyright 2010 by Pearson Education

Point.java (class of

"| objects)
pubikieveias sy ommrnd
SR o A
I R
}
e e e
e by

I

//6¢¢¢”””/Mﬂ@fmwx n
PointMain client example

OB O e A B e S i o S P

P EneE e e v e e EnE e
// create two Point objects
Pom e it = ni e Be e e
plioyi=i2;
POnEVp 2y S new Podntit)iy
p2.x = 4;

System.out.println(pl.x + ", " + pl.y); e

// move p2 and then print it

p2.x += 2;

p2.y++;

Syisbempbb v prrnE o pZ2a a2 s 1F 6,0l

20
Copyright 2010 by Pearson Education

Object behavior:
Methods

reading: 8.3

- —

Client code redundancy

e Suppose our client program wants to draw Point objects:

// draw each city

Point pl = new Point();
pl.x = 15;
P vii= 3T

g F11T0val (plix ipligi 3 3%
g.drawString("(" + pl.x + ", " + pl.y + ")", pPl.x, pl.y);

 To draw other points, the same code must be repeated.
 We can remove this redundancy using a method.

22
Copyright 2010 by Pearson Education

I

L —
Eliminating redundancy, vl

* We can eliminate the redundancy with a static method:

// Draws the given point on the DrawingPanel.
Dlabdspews b e e diarawi R o e R G A e e g
i O A DN R S
G S S A e e O e T A

e main would call the method as follows:
draw(pl, g);

23
Copyright 2010 by Pearson Education

- —

-

Problems with static solution

» We are missing a major benefit of objects: code reuse.
» Every program that draws Points would need a draw method.

* The syntax doesn't match how we're used to using
objects.

draw(pl, qg); // static (bad)

* The point of classes is to combine state and behavior.
» The draw behavior is closely related to a Point's data.
» The method belongs inside each pPoint object.

pl.draw(g) ; // inside the object (better)

24
Copyright 2010 by Pearson Education

e

Instance methods

* instance method (or object method): Exists inside
each object of a class and gives behavior to each object.

/7

public type name (parameters) {
statements;

}

* same syntax as static methods, but without static keyword

Example:

Pl e enidvE o W
System.out.println ("HELLO THERE!");

}

25
Copyright 2010 by Pearson Education

I

 —
Instance method example

Db e e S S R O
sy
AR Y .
// Draws this Point object with the given pen.
public void draw (Graphics g) {

}
}

» The draw method no longer has a point p parameter.

 How will the method know which point to draw?
« How will the method access that point's x/y data?

26
Copyright 2010 by Pearson Education

-

Point objects w/ method

* Each point object has its own copy of the draw method, which
operates on that object's state:

pl

Point pl = new Point();

Pliseaa

el

el ol

Point p2 = new Point();

p2.x = 4;

. public void draw (Graphics g) {

: // this code can see pl's x and y
}

pl.draw(qg) ;
p2.draw(qg) ;

x| 4 3
O—| [T

pubErevwaaehvd oS raphrasigind
// this code can see p2's x and y

}

20
Copyright 2010 by Pearson Education

" el

/u

The implicit parameter

 implicit parameter:
The object on which an instance method is called.

s

e During the call p1.draw(qg) ;
the object referred to by p1 is the implicit parameter.

e During the call p2.draw (g) ;
the object referred to by p2 is the implicit parameter.

» The instance method can refer to that object's fields.
« We say that it executes in the context of a particular object.
« draw can refer to the x and y of the object it was called on.

28
Copyright 2010 by Pearson Education

I

// m
Point class, version 2

Db e e S S R O
TERRESeRs

AR Y .

// Changes the location of this Point object.
publae wordh drawiGraphics gl |

eps e Y e SRR el

g.drawString (Nt B P NPt Y B OB

)

 Each point object contains a draw method that draws that
point at its current x/y position.

29
Copyright 2010 by Pearson Education

—

-

Class method questions

* Write a method translate that changes a pPoint's
location by a given dx, dy amount.

* Write a method distanceFromOrigin that returns the
distance between a point and the origin, (0, 0).

Use the formula: \/(x2 —x1)2 + (yz —y1)2

* Modify the point and client code to use these methods.

30
Copyright 2010 by Pearson Education

- —

lass method answers

plblbee e hassbewmi
3 aNERe e
Ak

g

public void translate(int dx, int dy) {
b4 x + dx;

y =y + dy;

}

public double distanceFromOrigin() ({
return Math.sqrt(x * x + y * y);

}

il
Copyright 2010 by Pearson Education

