Building Java Programs

Chapter 4
Lecture 4-1: Scanner; if/else

reading: 3.3 – 3.4, 4.1, 4.5
A GUIDE TO
UNDERSTANDING FLOW CHARTS
PRESENTED IN FLOW CHART FORM

START

DO YOU UNDERSTAND FLOW CHARTS?

YES

GOOD

NO

OKAY. YOU SEE THE LINE LABELED "YES"?

YES

...AND YOU CAN SEE THE ONES LABELED "NO"?

YES

LET'S GO DRINK.

NO

SCREW IT.

6 DRINKS

HEY, I SHOULD TRY INSTALLING FREEBSD!

NO

BUT YOU SEE THE ONES LABELED "NO".

YES

WAIT, WHAT?

NO

LISTEN.

I HATE YOU.

BUT YOU JUST FOLLOWED THEM TWICE!

YES

(THAT WASN'T A QUESTION.)

NO

Copyright 2010 by Pearson Education
Interactive Programs
with Scanner

reading: 3.3 - 3.4
Interactive programs

interactive program: Reads input from the console.

- While the program runs, it asks the user to type input.
- The input typed by the user is stored in variables in the code.
- Can be tricky; users are unpredictable and misbehave.
- But interactive programs have more interesting behavior.
Scanner

- **Scanner**: An object that can read input from many sources.
 - Communicates with `System.in`
 - Can also read from files (Ch. 6), web sites, databases, ...

- The Scanner class is found in the `java.util` package.

  ```java
  import java.util.*; // so you can use Scanner
  
  System.out.println("Please enter your name: ");
  Scanner name = new Scanner(System.in);
  String name = name.nextLine();
  System.out.print("Hello, ");
  System.out.println(name);"`
Scanner methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>nextInt()</code></td>
<td>reads an int from the user and returns it</td>
</tr>
<tr>
<td><code>nextDouble()</code></td>
<td>reads a double from the user</td>
</tr>
<tr>
<td><code>next()</code></td>
<td>reads a one-word <code>String</code> from the user</td>
</tr>
<tr>
<td><code>nextLine()</code></td>
<td>reads a one-line <code>String</code> from the user</td>
</tr>
</tbody>
</table>

- Each method waits until the user presses Enter.
- The value typed by the user is returned.

```java
System.out.print("How old are you? "); // prompt
int age = console.nextInt();
System.out.println("You typed " + age);
```

- **prompt:** A message telling the user what input to type.
import java.util.*; // so that I can use Scanner

public class UserInputExample {
    public static void main(String[] args) {
        Scanner console = new Scanner(System.in);

        System.out.print("How old are you? ");
        int age = console.nextInt(); // user input is underlined
        int years = 65 - age;
        System.out.println(years + " years until retirement!");
    }
}

• Console (user input underlined):

    How old are you? 29
    36 years until retirement!
Input tokens

- **token**: A unit of user input, as read by the `Scanner`.
  - Tokens are separated by *whitespace* (spaces, tabs, new lines).
  - How many tokens appear on the following line of input?
    ```plaintext
 23 John Smith 42.0 "Hello world" $2.50 " 19"
    ```

- When a token is not the type you ask for, it crashes.

  ```java
 System.out.print("What is your age? ");
 int age = console.nextInt();

 Output:
 What is your age? **Timmy**
 java.util.InputMismatchException
 at java.util.Scanner.next(Unknown Source)
 at java.util.Scanner.nextInt(Unknown Source)
 ...``
import java.util.*; // so that I can use Scanner

public class ScannerMultiply {
 public static void main(String[] args) {
 Scanner console = new Scanner(System.in);

 System.out.print("Please type two numbers: ");
 int num1 = console.nextInt();
 int num2 = console.nextInt();

 int product = num1 * num2;
 System.out.println("The product is "+ product);
 }
}

• Output (user input underlined):

Please type two numbers: 86
The product is 48

• The Scanner can read multiple values from one line.
If many methods need to read input, declare a `Scanner` in `main` and pass it to the other methods as a parameter.

```java
public static void main(String[] args) {
    Scanner console = new Scanner(System.in);
    int sum = readSum3(console);
    System.out.println("The sum is " + sum);
}

// Prompts for 3 numbers and returns their sum.
public static int readSum3(Scanner console) {
    System.out.print("Type 3 numbers: ");
    int num1 = console.nextInt();
    int num2 = console.nextInt();
    int num3 = console.nextInt();
    return num1 + num2 + num3;
}
```
The if/else statement

reading: 4.1, 4.5
The if statement

Executes a block of statements only if a test is true

```java
if (test) {
    statement;
    ...
    statement;
}
```

- Example:
  ```java
  double gpa = console.nextDouble();
  if (gpa >= 2.0) {
      System.out.println("Application accepted.");
  }
  ```
Relational expressions

• *if* statements and *for* loops both use logical tests.

```java
for (int i = 1; i <= 10; i++) {
  ...
}
if (i <= 10) {
  ...
}
```

• These are *boolean* expressions, seen in Ch. 5.

• Tests use *relational operators*:

<table>
<thead>
<tr>
<th>Operator</th>
<th>Meaning</th>
<th>Example</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>==</td>
<td>equals</td>
<td>1 + 1 == 2</td>
<td>true</td>
</tr>
<tr>
<td>!=</td>
<td>does not equal</td>
<td>3.2 != 2.5</td>
<td>true</td>
</tr>
<tr>
<td><</td>
<td>less than</td>
<td>10 < 5</td>
<td>false</td>
</tr>
<tr>
<td>></td>
<td>greater than</td>
<td>10 > 5</td>
<td>true</td>
</tr>
<tr>
<td><=</td>
<td>less than or equal to</td>
<td>126 <= 100</td>
<td>false</td>
</tr>
<tr>
<td>>=</td>
<td>greater than or equal to</td>
<td>5.0 >= 5.0</td>
<td>true</td>
</tr>
</tbody>
</table>
The if/else statement

Executes one block if a test is true, another if false

```java
if (test) {
    statement(s);
} else {
    statement(s);
}
```

- **Example:**
  ```java
  double gpa = console.nextDouble();
  if (gpa >= 2.0) {
      System.out.println("Welcome to Mars University!");
  } else {
      System.out.println("Application denied.");
  }
  ```
Misuse of if

• What's wrong with the following code?

Scanner console = new Scanner(System.in);
System.out.print("What percentage did you earn? ");
int percent = console.nextInt();
if (percent >= 90) {
 System.out.println("You got an A!");
}
if (percent >= 80) {
 System.out.println("You got a B!");
}
if (percent >= 70) {
 System.out.println("You got a C!");
}
if (percent >= 60) {
 System.out.println("You got a D!");
}
if (percent < 60) {
 System.out.println("You got an F!");
}
...
Nested if/else

Chooses between outcomes using many tests

```java
if (test) {
    statement(s);
} else if (test) {
    statement(s);
} else {
    statement(s);
}
```

- Example:

```java
if (x > 0) {
    System.out.println("Positive");
} else if (x < 0) {
    System.out.println("Negative");
} else {
    System.out.println("Zero");
}
```
Nested if/else/if

- If it ends with `else`, exactly one path must be taken.
- If it ends with `if`, the code might not execute any path.

```java
if (test) {
    statement(s);
} else if (test) {
    statement(s);
} else if (test) {
    statement(s);
}
```

- Example:

```java
if (place == 1) {
    System.out.println("Gold medal!");
} else if (place == 2) {
    System.out.println("Silver medal!");
} else if (place == 3) {
    System.out.println("Bronze medal.");
}
```
Nested if structures

• exactly 1 path (mutually exclusive)

```java
if (test) {
    statement(s);
} else if (test) {
    statement(s);
} else {
    statement(s);
}
```

• 0 or 1 path (mutually exclusive)

```java
if (test) {
    statement(s);
} else if (test) {
    statement(s);
} else if (test) {
    statement(s);
}
```

• 0, 1, or many paths (independent tests; not exclusive)

```java
if (test) {
    statement(s);
}
if (test) {
    statement(s);
}
if (test) {
    statement(s);
}
```
Which nested \texttt{if/else}?

- (1) \texttt{if/if/if}
 - Whether a user is lower, middle, or upper-class based on income.
 - (2) \texttt{nested if / else if / else}

- (2) \texttt{nested if/else if/else}
 - Whether you made the dean's list (GPA ≥ 3.8) or honor roll (3.5-3.8).
 - (3) \texttt{nested if / else if}

- (3) \texttt{nested if/else if}
 - Whether a number is divisible by 2, 3, and/or 5.
 - (1) \texttt{sequential if / if / if}

- (1) \texttt{sequential if / if / if}
 - Computing a grade of A, B, C, D, or F based on a percentage.
 - (2) \texttt{nested if / else if / else if / else if / else if / else}

Nested `if/else` question

Formula for body mass index (BMI):

\[
BMI = \frac{weight}{height^2} \times 703
\]

- Write a program that produces output like the following:

This program reads data for two people and computes their body mass index (BMI).

Enter next person's information:
height (in inches)? 70.0
weight (in pounds)? 194.25

Enter next person's information:
height (in inches)? 62.5
weight (in pounds)? 130.5

Person 1 BMI = 27.868928571428572
overweight
Person 2 BMI = 23.485824
normal
Difference = 4.3831045714285715
// This program computes two people's body mass index (BMI) and
// compares them. The code uses Scanner for input, and parameters/returns.

import java.util.*; // so that I can use Scanner

public class BMI {
 public static void main(String[] args) {
 introduction();
 Scanner console = new Scanner(System.in);
 double bmi1 = person(console);
 double bmi2 = person(console);

 // report overall results
 report(1, bmi1);
 report(2, bmi2);
 System.out.println("Difference = " + Math.abs(bmi1 - bmi2));
 }

 // prints a welcome message explaining the program
 public static void introduction() {
 System.out.println("This program reads data for two people and");
 System.out.println("computes their body mass index (BMI). ");
 System.out.println();
 }

 ...
Nested if/else, cont'd.

// reads information for one person, computes their BMI, and returns it
public static double person(Scanner console) {
 System.out.println("Enter next person's information:");
 System.out.print("height (in inches)? ");
 double height = console.nextDouble();
 System.out.print("weight (in pounds)? ");
 double weight = console.nextDouble();
 System.out.println();
 double bodyMass = bmi(height, weight);
 return bodyMass;
}

// Computes/returns a person's BMI based on their height and weight.
public static double bmi(double height, double weight) {
 return (weight * 703 / height / height);
}

// Outputs information about a person's BMI and weight status.
public static void report(int number, double bmi) {
 System.out.println("Person "+ number + " BMI = " + bmi);
 if (bmi < 18.5) {
 System.out.println("underweight");
 } else if (bmi < 25) {
 System.out.println("normal");
 } else if (bmi < 30) {
 System.out.println("overweight");
 } else {
 System.out.println("obese");
 }
}