
# Building Java Programs

Chapter 2

Lecture 2-2: The for Loop

reading: 2.3













### Repetition with for loops

So far, repeating an action results in redundant code:

```
makeBatter();
bakeCookies();
bakeCookies();
bakeCookies();
bakeCookies();
frostCookies();
```

Java's for loop statement performs a task many times.

```
mixBatter();
for (int i = 1; i <= 5; i++) {    // repeat 5 times
        bakeCookies();
}
frostCookies();</pre>
```

### for loop syntax

```
for (initialization; test; update) {
    statement;
    statement;
    ...
    statement;
}
```

- Perform initialization once.
- Repeat the following:
  - Check if the **test** is true. If not, stop.
  - Execute the statements.
  - Perform the **update**.

### Control structures

- **Control structure**: a programming construct that affects the flow of a program's execution
- Controlled code may include one or more statements
- The for loop is an example of a looping control structure

### Initialization

```
for (int i = 1; i <= 6; i++) {
    System.out.println("I am so smart");
}</pre>
```

- Tells Java what variable to use in the loop
  - The variable is called a loop counter
    - can use any name, not just i
    - can start at any value, not just 1
    - only valid in the loop
  - Performed once as the loop begins

### Test

```
for (int i = 1; i <= 6; i++) {
        System.out.println("I am so smart");
}</pre>
```

- Tests the loop counter variable against a limit
  - Uses comparison operators:
    - < less than
    - <= less than or equal to</pre>
    - > greater than
    - >= greater than or equal to

### Increment and decrement

shortcuts to increase or decrease a variable's value by 1

# Shorthand variable++; variable--; int x = 2; x++; double gpa = 2.5; gpa--;

```
Equivalent longer version
variable = variable + 1;
variable = variable - 1;
// x = x + 1;
// x now stores 3
// gpa = gpa - 1;
// gpa now stores 1.5
```

# Modify-and-assign operators

### shortcuts to modify a variable's value

### Shorthand

```
variable += value;
variable -= value;
variable *= value;
variable /= value;
variable %= value;
```

# x += 3; gpa -= 0.5; number \*= 2;

### Equivalent longer version

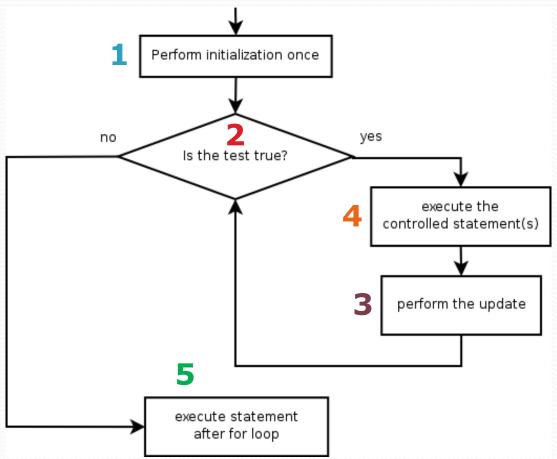
```
variable = variable + value;
variable = variable - value;
variable = variable * value;
variable = variable / value;
variable = variable % value;
```

```
// x = x + 3;
// gpa = gpa - 0.5;
// number = number * 2;
```

### Repetition over a range

```
System.out.println("1 squared = " + 1 * 1);
System.out.println("2 squared = " + 2 * 2);
System.out.println("3 squared = " + 3 * 3);
System.out.println("4 squared = " + 4 * 4);
System.out.println("5 squared = " + 5 * 5);
System.out.println("6 squared = " + 6 * 6);
```

- Intuition: "I want to print a line for each number from 1 to 6"
- The for loop does exactly that!


```
for (int i = 1; i <= 6; i++) {
    System.out.println(i + " squared = " + (i * i));
}</pre>
```

"For each integer i from 1 through 6, print ..."

### Loop walkthrough

for (int i = 1; i <= 4; i++) {
 4 System.out.println(i + " squared = " + (i \* i));
}
System.out.println("Whoo!");</pre>

```
1 squared = 1
2 squared = 4
3 squared = 9
4 squared = 16
Whoo!
```



# Multi-line loop body

```
System.out.println("+---+");
for (int i = 1; i <= 3; i++) {
    System.out.println("\\ \\");
    System.out.println("/ \\");
}
System.out.println("+---+");</pre>
```

### Expressions for counter

```
int highTemp = 5;
for (int i = -3; i <= highTemp / 2; i++) {
    System.out.println(i * 1.8 + 32);
}</pre>
```

### Output:

```
26.6
28.4
30.2
32.0
```

33.8

35.6

### System.out.print

- Prints without moving to a new line
  - allows you to print partial messages on the same line

```
int highestTemp = 5;
for (int i = -3; i <= highestTemp / 2; i++) {
    System.out.print((i * 1.8 + 32) + " ");
}</pre>
```

Output:

```
26.6 28.4 30.2 32.0 33.8 35.6
```

Concatenate " " to separate the numbers

### Counting down

- The update can use -- to make the loop count down.
  - The **test** must say > instead of <</li>

```
System.out.print("T-minus ");
for (int i = 10; i >= 1; i--) {
        System.out.print(i + ", ");
}
System.out.println("blastoff!");
System.out.println("The end.");
```

```
T-minus 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, blastoff! The end.
```

# Nested loops

reading: 2.3

### Nested loops

nested loop: A loop placed inside another loop.

```
for (int i = 1; i <= 5; i++) {
    for (int j = 1; j <= 10; j++) {
        System.out.print("*");
    }
    System.out.println(); // to end the line
}</pre>
```

```
*********

**************
```

- The outer loop repeats 5 times; the inner one 10 times.
  - "sets and reps" exercise analogy

# Nested for loop exercise

• What is the output of the following nested for loops?

```
for (int i = 1; i <= 5; i++) {
    for (int j = 1; j <= i; j++) {
        System.out.print("*");
    }
    System.out.println();
}</pre>
```

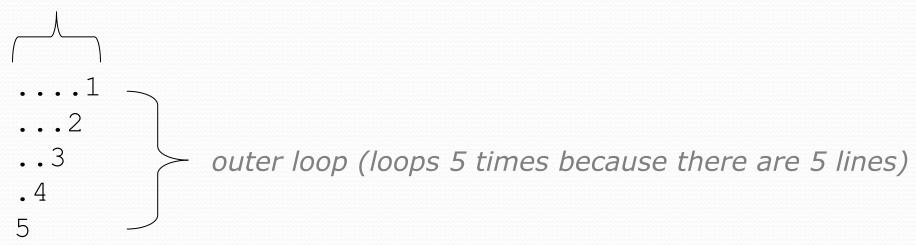
# Nested for loop exercise

• What is the output of the following nested for loops?

```
for (int i = 1; i <= 5; i++) {
    for (int j = 1; j <= i; j++) {
        System.out.print(i);
    }
    System.out.println();
}</pre>
```

```
1
22
333
4444
55555
```

### Common errors


Both of the following sets of code produce infinite loops:

```
for (int i = 1; i \le 5; i++) {
    for (int j = 1; i <= 10; j++) {
        System.out.print("*");
    System.out.println();
}
for (int i = 1; i \le 5; i++) {
    for (int j = 1; j <= 10; i++) {
        System.out.print("*");
    System.out.println();
```

# Complex lines

• What nested for loops produce the following output?

inner loop (repeated characters on each line)



- We must build multiple complex lines of output using:
  - an outer "vertical" loop for each of the lines
  - inner "horizontal" loop(s) for the patterns within each line

### Outer and inner loop

First write the outer loop, from 1 to the number of lines.

- Now look at the line contents. Each line has a pattern:
  - some dots (0 dots on the last line), then a number

```
...1
...2
..3
.4
```

Observation: the number of dots is related to the line number.

### Mapping loops to numbers

```
for (int count = 1; count <= 5; count++) {
    System.out.print( ... );
}</pre>
```

What statement in the body would cause the loop to print:

```
4 7 10 13 16
```

```
for (int count = 1; count <= 5; count++) {
    System.out.print(3 * count + 1 + " ");
}</pre>
```

### Loop tables

 What statement in the body would cause the loop to print:

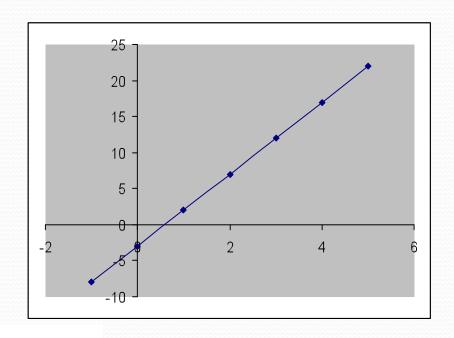
```
2 7 12 17 22
```

- To see patterns, make a table of count and the numbers.
  - Each time count goes up by 1, the number should go up by 5.
  - But count \* 5 is too great by 3, so we subtract 3.

| coun | number to | 5 *   | 5 * count - 3 |
|------|-----------|-------|---------------|
| t    | print     | count | 2             |
| 1    | 2         | 5     | 7             |
| 2    | 7         | 10    | /             |
| 3    | 12        | 15    | 12            |
|      |           |       | 17            |
| 4    | 17        | 20    | 22            |
| 5    | 22        | 25    |               |

### Loop tables question

 What statement in the body would cause the loop to print:


17 13 9 5 1

- Let's create the loop table together.
  - Each time count goes up 1, the number printed should ...
  - But this multiple is off by a margin of ...

| coun | number to | -4 * count | -4 * count + 21 |
|------|-----------|------------|-----------------|
| t    | print     | -4         | 17              |
| 1    | 17        | -8         | 13              |
| 2    | 13        | -12        | 9               |
| 3    | 9         | -16        | 5               |
| 4    | 5         |            | 1               |
| 5    | 1         | -20        | 1               |

# Another view: Slopeintercept

 The next three slides present the mathematical basis for the loop tables. Feel free to skip it.



| count (x) | number to print ( $y$ ) |
|-----------|-------------------------|
| 1         | 2                       |
| 2         | 7                       |
| 3         | 12                      |
| 4         | 17                      |
| 5         | 22                      |

# Another view: Slopeintercept

- Caution: This is algebra, not assignment!
- Recall: slope-intercept form (y = mx + b)
- Slope is defined as "rise over run" (i.e. rise / run). Since the "run" is always 1 (we increment along x by 1), we just need to look at the "rise". The rise is the difference between the y values. Thus, the slope (m) is the difference between y values; in this case, it is +5.
- To compute the y-intercept (b), plug in the value of y at x=1 and solve for b. In this case, y=2.

$$y = m * x + b$$
  
 $2 = 5 * 1 + b$   
Then  $b = -3$ 

So the equation is

$$y = m * x + b$$
  
 $y = 5 * x - 3$   
 $y = 5 * count - 3$ 

| count (x) | number to print ( $y$ ) |
|-----------|-------------------------|
| 1         | 2                       |
| 2         | 7                       |
| 3         | 12                      |
| 4         | 17                      |
| 5         | 22                      |

# Another view: Slopeintercept

• Algebraically, if we always take the value of y at x = 1, then we can solve for b as follows:

$$y = m * x + b$$
  
 $y_1 = m * 1 + b$   
 $y_1 = m + b$   
 $b = y_1 - m$ 

- In other words, to get the y-intercept, just subtract the slope from the first y value (b = 2 5 = -3)
  - This gets us the equation

$$y = m * x + b$$
  
 $y = 5 * x - 3$   
 $y = 5 * count - 3$ 

(which is exactly the equation from the previous slides)

# Nested for loop exercise

Make a table to represent any patterns on each line.

| • | • | • | • | 1 |  |
|---|---|---|---|---|--|
| • | • | • | 2 |   |  |
| • | • |   |   |   |  |
| • |   |   |   |   |  |
| 5 |   |   |   |   |  |

|     |      |           | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|-----|------|-----------|----------------------------------------|
| lin | # of | -1 * line | -1 * line + 5                          |
| е   | dots | -1        | 4                                      |
| 1   | 4    | -2        | 3                                      |
| 2   | 3    | -3        | 2                                      |
| 3   | 2    | -4        | 1                                      |
| 4   | 1    | -5        | 0                                      |
| 5   | 0    |           |                                        |

• To print a character multiple times, use a for loop.

### Nested for loop solution

### • Answer:

```
for (int line = 1; line <= 5; line++) {
    for (int j = 1; j <= (-1 * line + 5); j++) {
        System.out.print(".");
    }
    System.out.println(line);
}</pre>
```

```
...1
...2
..3
.4
```

# Nested for loop exercise

• What is the output of the following nested for loops?

```
for (int line = 1; line <= 5; line++) {
    for (int j = 1; j <= (-1 * line + 5); j++) {
        System.out.print(".");
    }
    for (int k = 1; k <= line; k++) {
        System.out.print(line);
    }
    System.out.println();
}</pre>
```

Answer:

```
...22
..333
.4444
55555
```

# Nested for loop exercise

• Modify the previous code to produce this output:

```
...1
...2.
..3..
.4...
```

### • Answer:

```
for (int line = 1; line <= 5; line++) {
    for (int j = 1; j <= (-1 * line + 5); j++) {
        System.out.print(".");
    }
    System.out.print(line);
    for (int j = 1; j <= (line - 1); j++) {
        System.out.print(".");
    }
    System.out.println();
}</pre>
```