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CSE 142, Spring 2015 
Programming Assignment #4: Gradanator (40 points)  

Due Tuesday, April 28, 2015, 11:00 PM 
This interactive program focuses on if/else statements, Scanner, and returning values.  Turn in a file named 
Gradanator.java.  To use a Scanner for console input, you must import java.util.*; in your code.  The program 
prompts a student for grades on homework and two exams and uses them to compute the student's course grade. 

Below is one example log of execution from the program.  This program behaves differently depending on the user input; user 
input is bold and underlined below to make it stand out.  Your output should match our examples exactly given the same input.  
(Be mindful of spacing, such as after input prompts and between output sections.)  Look at the other example logs on the 

course web site and on the next page to get more examples of the 
program's behavior. 

The program begins with an introduction message that briefly 
explains the program.  The program then reads scores in three 
categories: midterm, homework and final.  Each category is 
weighted: its points are scaled up to a fraction of the 100 percent 
grade for the course.  As the program begins reading each category, 
it first prompts for the category's weight. 

The user begins by entering scores earned on the midterm.  The 
program asks whether exam scores were shifted, interpreting an 
answer of 1 to mean “yes” and 2 to mean “no.”  If there is a shift, 
the program prompts for the shift amount, and the shift is added to 
the user's midterm score.  Exam scores are capped at a max of 100; 
for example, if the user got 95 and there was a shift of 10, the score 
to use would be 100.  The midterm's “weighted score” is printed, 
which is equal to the user's score multiplied by the exam's weight. 

Next, the program prompts for data about the final.  This behavior 
is the same as the behavior for the midterm. 

Next, the user enters information about his/her homework, 
including the weight and how many assignments were given.  For 
each assignment, the user enters a score and points possible.  Use a 
cumulative sum as in textbook section 4.2. 

Section attendance is included in the homework category.  You should assume that each section attended is worth 5 points, up 
to a maximum of 30 points.  This means that section points are capped to 30 before they are added to the homework category. 

Once the program has read the user information for both exams and homework, it prints the student's overall percentage earned 
in the course, which is the sum of the weighted scores from the three categories, as shown below: 
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Grade =15.6 + 35.0 + 36.1475411
Grade = round(86.7475411) = 86.7

 

The program prints a loose guarantee about a minimum grade on the 4.0-scale the student will get in the course, based on the 
following scale.  See the logs of execution on the course web site to see the expected output for each grade range. 

85% and above: 3.0; 84.99% - 75%: 2.0; 74.99% - 60%:  0.7; under 60%: 0.0 

After printing the guaranteed minimum grade, print a custom message of your choice about the grade.  This message should be 
different for each grade range shown above.  It should be at least 1 line of any non-offensive text you like. 
 

This program reads exam/homework scores 
and reports your overall course grade. 
 
Midterm:  
Weight (0-100)? 20  
Score earned? 78 
Were scores shifted (1=yes, 2=no)? 2  
Total points = 78 / 100  
Weighted score = 15.6 / 20  
 
Final:  
Weight (0-100)? 35  
Score earned? 95  
Were scores shifted (1=yes, 2=no)? 1  
Shift amount? 10  
Total points = 100 / 100  
Weighted score = 35.0 / 35  
 
Homework:  
Weight (0-100)? 45  
Number of assignments? 3 
Assignment 1 score and max? 18 20 
Assignment 2 score and max? 29 32 
Assignment 3 score and max? 31 40 
How many sections did you attend? 4  
Section points = 20 / 30  
Total points = 98 / 122  
Weighted score = 36.1 / 45  
 
Overall percentage = 86.7  
Your grade will be at least: 3.0 
<< your custom grade message here >> 
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This program processes user input using a Scanner.  You should handle the following two special cases of input: 
• A student can receive extra credit on an individual assignment, but the total points for homework are capped at the 

maximum possible.  For example, a student who earns 41/40, 39/40, and 47/40 on three assignments, and 25/30 on section 
attendance will receive 150 homework points (the max) even though they earned 152. Sections points are capped at 30. 

• Cap exam scores at 100.  If the raw or shifted exam score exceeds 100, a score of 100 is used. 

Otherwise, you may assume the user enters valid input.  When prompted for a value, the user will enter an integer in the 
proper range.  The user will enter a number of homework assignments ≥ 1, and the sum of the three weights will be exactly 
100.  The weight of each category will be a non-negative number.  Exam shifts will be ≥ 0. 

Development Strategy and Hints: 
• Tackle parts of the program (midterm, homework, final exam) one at a time, rather than writing the entire program at 

once.  Write a bit of code, get it to compile, and test what you have so far.  If you try to write large amounts of code 
without attempting to compile it, you may encounter a large list of compiler errors and/or bugs. 

• To compute homework scores, you will need to cumulatively sum not only the total points the student has earned, but 
also the total points possible on all homework assignments.  See textbook section 4.2 about cumulative sums. 

• The homework part reads two values on one line from the Scanner.  See the lecture slides for an example of this. 
• Many students get "cannot find symbol" compiler errors.  Common mistakes include forgetting to pass / return a 

needed value, forgetting to store a returned value into a variable, and referring to a variable by the wrong name. 
• All weighted scores and grades are printed with no more than 1 digit after the decimal point.  Achieve this with a 

custom method or System.out.printf.  The following code prints variable x rounded to the nearest tenth: 
double x = 1.2345; 
System.out.printf("x is around %.1f in size.\n", x);  // 1.2 

• If you are getting scores of 0 regardless of what data the user types, you may have a problem with integer division.  
See Chapter 2 about types int and double, type-casting, and how to avoid integer division problems.  If you have a 
value of type double but need to convert it into an int, use a type-cast such as the following: 

double d = 5.678; 
int i = (int) d;   // 5 

• Use Math.max and Math.min to constrain numbers to within a particular bound. 

Style Guidelines: 
For this assignment, you are limited to Java features from Ch. 1-4.  A major part of this assignment is demonstrating that you 
understand parameters and return values.  Use static methods, parameters, and returns for structure and to eliminate 
redundancy.  For full credit, use at least 4 non-trivial methods other than main.  For reference, our solution is roughly 110 
lines long (66 “substantive”), with 6 methods other than main, though you do not need to match this. 

Like on previous assignments, you should not have println statements in your main method.  Also, main should be a concise 
summary of the overall program; main should make calls to several of your other methods that implement the majority of the 
program's behavior.  Your methods will need to make appropriate use of parameters and return values.  Each method should 
perform a coherent task and should not do too large a share of the overall work.  Avoid lengthy “chaining” of method calls, 
where each method calls the next, no values are returned, and control does not come back to main.  (See textbook Chapter 4's 
case study for a discussion of well-designed versus poorly designed methods.) 

This document describes several numbers that are important to the overall program.  For full credit, you should make at least 
one of such numbers into a class constant so that the constant could be changed and your program would adapt. 

When handling numeric data, you are expected to choose appropriately between types int and double.  You will lose points 
if you use type double for variables in cases where type int would be more appropriate. 

Some of your code will use conditional execution with if and if/else statements.  Part of your grade will come from using 
these statements properly.  Review book sections 4.1-4.3 about nested if/else statements and factoring them.   

Give meaningful names to methods and variables, and use proper indentation and whitespace.  Follow Java's naming standards 
as specified in Chapter 1.  Localize variables when possible; declare them in the smallest scope needed.  Include meaningful 
comment headers at the top of your program and at the start of each method.  Limit line lengths to 100 chars. 


