Building Java Programs

Chapter 8

Lecture 8-2: Object Behavior (Methods)
and Constructors, Encapsulation, this

reading: 8.2 - 8.3, 8.5 - 8.6
self-checks: #13-17
exercises: #5

Copyright 2010 by Pearson Education

Abstraction

- AN x64 PROCESSR 16 SCREAMING ALONG AT BLUONS OF
CYCLES PER SECOND T0 RUN THE XNU KERNEL, WHICH 1S

Don't need FRANTICALLY WORKING THROUGH ALL THE: F0SIX-SPECIFED
to know — ARSTRACTION TO CREATE THE DRQUIN SYSTEM UNDERIYING

this

05 X, WHICH INTORN IS STRAINING ITSELF 0 RN FIREROX
AND IT5 GECKO RENDERER, WHICH (REATES A RASH OBTECT
— | WHICH RENDERS TOZENS OF VIDED FRANMES EVERY SECOND

BECAUSE I WANTED TO SEE A CAT
JUMP INTO A BOX AND FALL OVER.

O l X 1A GOD

Copyright 2010 by Pearson Education

Can focus
on this!!

e —

%% Why objects?

* Primitive types don't model complex concepts well
o Cost is a double. What's a person?
» Classes are a way to define new types
 Many objects can be made from those types

* Values of the same type often are used in similar ways
» Promote code reuse through instance methods

Copyright 2010 by Pearson Education

oo

e

-

Recall: Instance methods

* instance method (or object method): Exists inside each
object of a class and gives behavior to each object.

public type name (parameters) |
statements;

}

e same syntax as static methods, but without static keyword

Example:

plibiEmeareaiairomda iy
WA e N o niet i S FE R BlE R SR Y

}

Copyright 2010 by Pearson Education

e .
Point objects w/ method

e Each point object has its own copy of the distanceFromOrigin
method, which operates on that object's state: pi @

Point pl = new Point();
e e X7 g)
R

publicvdouble distancePromOrigim() i

Pointip2i=tnew Poirbi); // this code can see pl's x and y

OV e return Math.sqgrt(x * x + vy * y);

A e

pl.distanceFromOrigin() ;

p2.distanceFromOrigin() ;
x4 w3

2
° ::: EYO WM R SRR L O SIS S e o MY e O Ve M A B A

// this code can see p2's x and y
return Math.sgrt(x * x +y * y);

Copyright 2010 by Pearson Education

——

Kinds of methods

» accessor: A method that lets clients examine object state.
« Examples: distance, distanceFromOrigin

» often has a non-void return type

* mutator: A method that modifies an object's state.
e Examples: setlLocation, translate

Copyright 2010 by Pearson Education

-
Variable names and scope

e Usually it is illegal to have two variables in the same scope
with the same name.

pubisevclass "Poangid
T
i g A

public void setLocation (int newX, int newY) ({
X = newX;
Yy = newy;

}

» The parameters to setLocation are named newX and newY to
be distinct from the object's fields x and y.

Copyright 2010 by Pearson Education

s

Variable shadowing

* An instance method parameter can have the same name as
one of the object's fields:

// this is legal

public void setLocation(int x, 1int y) {

}

» Fields x and y are shadowed by parameters with same names.
 Any setLocation code that refers to x or y will use the
parameter, not the field.

Copyright 2010 by Pearson Education

this
* this : A reference to the implicit parameter.
o implicit parameter: object on which a method is called

e Syntax for using this:

 To refer to a field:
this.field

e To call a method:
this.method (parameters) ;

e To call a constructor from another constructor:
this (parameters) ;

Copyright 2010 by Pearson Education

B

Avoiding shadowing W/ this

pubivEevselag SR omr
R gEwD
int y;

public void setlLocation(int x, 1int y) {
this.x = x;
this.y = y;

e Inside the setLocation method,

« When this.x is seen, the field x is used.
» When x is seen, the parameter x is used.

10
Copyright 2010 by Pearson Education

—

Printing objects

* By default, Java doesn't know how to print objects:

Poumip amew Pod piilhe
Pl
D e

S e Ed b e s R o D

// better, but cumbersome; P
SysSFenmyonE i pruntini o ds il st

// desired behavior
System.out.println("p is " + p); // p

Copyright 2010 by Pearson Education

is Point@9e8c34

is (10, 7)
"o Do+ Iy

is (10, 7)

i

B

 —
The toString method

tells Java how to convert an object into a String

Pointivpiveanew o m e o
System.out.println("pl: " + pl);

// the above code is really calling the following:
Sy em e e et o SEEIng)

* Every class has a toString, even if it isn't in your code.
o Default: class's name @ object's memory address (base 16)

Point@9e8c34

12
Copyright 2010 by Pearson Education

I cotring SYHtax

P e e e e
code that returns a String representing this object;

» Method name, return, and parameters must match exactly.

 Example:

// Returns a String representing this Point.
BEUN o GRS s W s SO BT S e e Yo o
return 11} (" _|_ X _|_ ", 11} _|_ y _|_ ") ";

}

13
Copyright 2010 by Pearson Education

L ——

Object initialization:
constructors

reading: 8.3

B

Initializing objects

e Currently it takes 3 lines to create a Point and initialize it:

Point pl =inew Pointit)e
P = a
p.y = 8; // tedious

» We'd rather specify the fields' initial values at the start:

Point p = new Point (3, 8); // desired; doesn't work (yet)

 We are able to this with most types of objects in Java.

15
Copyright 2010 by Pearson Education

e —

Constructors

e constructor: Initializes the state of new objects.

public type (parameters) {
statements;

}

* runs when the client uses the new keyword

* no return type is specified;
it implicitly "returns” the new object being created

» If a class has no constructor, Java gives it a default constructor
with no parameters that sets all fields to O.

16
Copyright 2010 by Pearson Education

B

Constructor example

JBUYY ey el el DoV Ro v S e YA s
T e
VRS

// Constructs a Point at the given x/y location.
public Point (int initialX, int initialY) {
initialX;

initialyY;

X
y

publ e wwordi T ranstatevint adx s anfaduy
S e

i O

}

Copyright 2010 by Pearson Education

%

B

Tracing a constructor call

* What happens when the following call is made?

Pevintwiline b e

p1©—» X y

CYa O e T s e B A de e e s i S L A SRR G e et e VA e o e o
X = initialX;
y = initialyY;

}

AN oM e e R W el m M e R T el e B A M s M o S
X += dx;
y += dy;

18
Copyright 2010 by Pearson Education

e

e —

g

Common constructor bugs

1. Re-declaring fields as local variables ("shadowing"):

o bR oY el Yo Y Ve A W it sh s Y A e e 8 O ety M A e My M e W) O ey M
v o chi e M iy e W N Y)
% o b Ve s A

}

e This declares local variables with the same name as the fields,
rather than storing values into the fields. The fields remain O.

2. Accidentally giving the constructor a return type:
pubimevwrord “Pon b i ok et e o R e e ey
e s Rt b
Ve oS
}
» This is actually not a constructor, but a method named point

19
Copyright 2010 by Pearson Education

B

= :
Client code, version 3

S e S I M P By
pubile v siEarTevivesdema it S Eriaai il aras)

// create two Point objects

Point pl = new Point (5, 2);

Point p2 = new Point (4, 3);

// print each point

Shvichallaionbl iy euah nh okl 1 0 11 ikl oM LI R o R R L e e o e T
e = e Y B o) O e i 0 M s e e e

// move p2 and then print it again
p2.translate (2, 4);

SRS Shl el bl el o b by o s okl Bl o A I Bl o A i e o
}
}
OUTPUT:
joRiI R ot
B2 gy
p2: (6, 7)
20

Copyright 2010 by Pearson Education

B

.
Multiple constructors

* A class can have multiple constructors.
» Each one must accept a unique set of parameters.

* Exercise: Write a Point constructor with no parameters
that initializes the point to (0, 0).

// Constructs a new point at (0, 0).
pubir e Pornt (g

x = 0;

Vi O

21
Copyright 2010 by Pearson Education

Encapsulation

 encapsulation: Hiding implementation details of an
object from its clients.

» Encapsulation provides abstraction.
« separates external view (behavior) from internal view (state)
» Encapsulation protects the integrity of an object's data.

3 k83
S22k

Qo
Qn o3 ama

40310 Lt
/ AUNO OUTPUT .
— Lhaa Measure=jm

Resistor Voltage .82
Here Here !

Copyright 2010 by Pearson Education

D2

Private fields

* A field can be declared private.
* No code outside the class can access or change it.

—

private type name;

 Examples:

private int 1id;
private String name;

* Client code sees an error when accessing private fields:

PointMain.java:11l: x has private access in Point
Sysktem ouk prinkln (pl as (e Pl Y

A

Copyright 2010 by Pearson Education

23

B

Accessing private state

* We can provide methods to get and/or set a field's value:

// A "read-only" access to the x field ("accessor")

PUbI e T e e
IBeEieRine e

}

// Allows clients to change the x field ("mutator")
public void setX(int newX) {
X = newX;

e Client code will look more like this:

S AVAT AN Y ALY v B MRy & e A A AR Wi A A S A SR) o 8 AT =% o, O B B s R R o o M Ve (=2 i o A IO A M
pl.setX(14);

24
Copyright 2010 by Pearson Education

B

Point class, version 4

// A Point object represents an (x, y) location.
pulibrevelass BT

private int x;

private int y;

Y ERUE O B X o) o T B s A 14 9 0 w4 0 i s 1 0, AP0 Y 0 v 0 o Y 1 o 49 2 |

X = initialX;
y = initialY;
}
public double distanceFromOrigin () {

N P A LI N B PN L A A I O I I S
}

public int getX() {
return x;
}

public int getY¥ () {
return y;
}

public void setLocation(int newX, int newY) {
X = newX;
S NS

}

public void translate(int dx, int dy) {
X SRR AN O D G
y =y + dy;

25
Copyright 2010 by Pearson Education

B

Client code, version 4

public class PointMain4d ({
public static void main (String[] args) {
// create two Point objects
A AR AN AN AN AN L A e A AN A A A A
Point p2 = new Point (4, 3);

// print each point
System.out.println("pl: (" + pl.getX() + ", " + pl.getY() + ")");
ARG =11 oY AU o w2 Sl &) oY M o M ARSI o 2T o 1 4 w0 4) MO R R I o o 12y ob Y) I

// move p2 and then print it again
p2.translate (2, 4);
VA R DS MR G WA 4 60 A7 RV i O NS M SRty o a0 0 |- b 1 % I AR AIMA RV Y o 400 1= sk O 08 A A MU Y

}

OUTPUT:

P2
SRR MV ISR)
| SRy i Ul SRR)

26
Copyright 2010 by Pearson Education

e

el

—

Benefits of encapsulation

Provides abstraction between an object and its clients.

Protects an object from unwanted access by clients.

» A bank app forbids a client to change an Account's balance.

Allows you to change the class implementation.

 Point could be rewritten to use polar coordinates
(radius r, angle 8), but with the same methods. o

(r.8)

Allows you to constrain objects' state (invariants).
« Example: Only allow pPoints with non-negative coordinates.

Copyright 2010 by Pearson Education

\

Pk

—

Multiple constructors

e It is legal to have more than one constructor in a class.
» The constructors must accept different parameters.

pubievelhass Pann o
SN S = R e
private 1int y;

public Point () ({

X 0;
y = 0;
}

publie i Perntitim il s i e gl
i A s Ry G
VR s e e Y

}

28
Copyright 2010 by Pearson Education

B

L —
Constructors and this

* One constructor can call another using this:

BHDN S M el D S e A
privaterng =Xy
Pr i adve v

pubrey Rorntin
this (0, 0); // calls the (x, y) constructor
}

publa e Polne Nt s e)
this.x X;
this.y Y’

29
Copyright 2010 by Pearson Education

