
Copyright 2014 by Pearson Education

Building Java Programs

Chapter 1
Lecture 1-2: Static Methods

reading: 1.4 - 1.5

Copyright 2014 by Pearson Education
2

Copyright 2014 by Pearson Education
3

Recall: structure, syntax
public class name {
 public static void main(String[] args) {
 statement;
 statement;
 ...
 statement;
 }
}

�  Every executable Java program consists of a class,
�  that contains a method named main,

�  that contains the statements (commands) to be executed.

class: a program

statement: a command to be executed

method: a named group
of statements

Copyright 2014 by Pearson Education
4

Comments
�  comment: A note written in source code by the

programmer to describe or clarify the code.
�  Comments are not executed when your program runs.

�  Syntax:
 // comment text, on one line

 or,
/* comment text; may span multiple lines */

�  Examples:
// This is a one-line comment.

/* This is a very long
 multi-line comment. */

Copyright 2014 by Pearson Education
5

Comments example
/* Suzy Student, CSE 142, Fall 2019
 Displays lyrics*/

public class Lyrics {
 public static void main(String[] args) {
 // first line
 System.out.println("When I first got into magic");
 System.out.println("it was an underground phenomenon");
 System.out.println();

 // second line
 System.out.println("Now everybody's like");
 System.out.println("pick a card, any card");
 }
}

Copyright 2014 by Pearson Education

Static methods

reading: 1.4

Copyright 2014 by Pearson Education
7

Algorithms
�  algorithm: A list of steps for solving a problem.

�  Example algorithm: "Bake sugar cookies"
�  Mix the dry ingredients.
�  Cream the butter and sugar.
�  Beat in the eggs.
�  Stir in the dry ingredients.
�  Set the oven temperature.
�  Set the timer for 10 minutes.
�  Place the cookies into the oven.
�  Allow the cookies to bake.
�  Spread frosting and sprinkles onto the cookies.
�  ...

Copyright 2014 by Pearson Education
8

Problems with algorithms
�  lack of structure: Many steps; tough to follow.

�  redundancy: Consider making a double batch...
�  Mix the dry ingredients.
�  Cream the butter and sugar.
�  Beat in the eggs.
�  Stir in the dry ingredients.
�  Set the oven temperature.
�  Set the timer for 10 minutes.
�  Place the first batch of cookies into the oven.
�  Allow the cookies to bake.
�  Set the timer for 10 minutes.
�  Place the second batch of cookies into the oven.
�  Allow the cookies to bake.
�  Mix ingredients for frosting.
�  ...

Copyright 2014 by Pearson Education
9

Structured algorithms
�  structured algorithm: Split into coherent tasks.

1 Make the batter.
�  Mix the dry ingredients.
�  Cream the butter and sugar.
�  Beat in the eggs.
�  Stir in the dry ingredients.

2 Bake the cookies.
�  Set the oven temperature.
�  Set the timer for 10 minutes.
�  Place the cookies into the oven.
�  Allow the cookies to bake.

3 Decorate the cookies.
�  Mix the ingredients for the frosting.
�  Spread frosting and sprinkles onto the cookies.

...

Copyright 2014 by Pearson Education
10

Removing redundancy
�  A well-structured algorithm can describe repeated tasks

with less redundancy.

1 Make the cookie batter.
�  Mix the dry ingredients.
�  ...

2a Bake the cookies (first batch).
�  Set the oven temperature.
�  Set the timer for 10 minutes.
�  ...

2b Bake the cookies (second batch).
�  Repeat Step 2a

3 Decorate the cookies.
�  ...

Copyright 2014 by Pearson Education
11

Static methods
�  static method: A named group of statements.

�  denotes the structure of a program
�  eliminates redundancy by code reuse

�  procedural decomposition:
dividing a problem into methods

�  Writing a static method is like
adding a new command to Java.

class
method A

n  statement
n  statement
n  statement

method B
n  statement
n  statement

method C
n  statement
n  statement
n  statement

Copyright 2014 by Pearson Education
12

Using static methods
1. Design (think about) the algorithm.

�  Look at the structure, and which commands are repeated.
�  Decide what are the important overall tasks.

2. Declare (write down) the methods.
�  Arrange statements into groups and give each group a name.

3. Call (run) the methods.
�  The program's main method executes the other methods to

perform the overall task.

Copyright 2014 by Pearson Education
13

Gives your method a name so it can be executed

�  Syntax:

public static void name() {
 statement;
 statement;
 ...
 statement;
}

�  Example:

public static void printWarning() {
 System.out.println("This product causes cancer");
 System.out.println("in lab rats and humans.");
}

Declaring a method

Copyright 2014 by Pearson Education
14

Calling a method
Executes the method's code

�  Syntax:

 name();

�  You can call the same method many times if you like.

�  Example:

 printWarning();

�  Output:

 This product causes cancer
 in lab rats and humans.

Copyright 2014 by Pearson Education
15

Program with static method
public class FreshPrince {
 public static void main(String[] args) {
 rap(); // Calling (running) the rap method
 System.out.println();
 rap(); // Calling the rap method again
 }

 // This method prints the lyrics to my favorite song.
 public static void rap() {
 System.out.println("Now this is the story all about how");
 System.out.println("My life got flipped turned upside-down");
 }
}

Output:

Now this is the story all about how
My life got flipped turned upside-down

Now this is the story all about how
My life got flipped turned upside-down

Copyright 2014 by Pearson Education
16

Methods calling methods
public class MethodsExample {
 public static void main(String[] args) {
 message1();
 message2();
 System.out.println("Done with main.");
 }

 public static void message1() {
 System.out.println("This is message1.");
 }

 public static void message2() {
 System.out.println("This is message2.");
 message1();
 System.out.println("Done with message2.");
 }
}

�  Output:
This is message1.
This is message2.
This is message1.
Done with message2.
Done with main.

Copyright 2014 by Pearson Education
17

�  When a method is called, the program's execution...
�  "jumps" into that method, executing its statements, then
�  "jumps" back to the point where the method was called.

public class MethodsExample {

 public static void main(String[] args) {

 message1();

 message2();

 System.out.println("Done with main.");

 }

 ...

}

public static void message1() {
 System.out.println("This is message1.");
}

public static void message2() {
 System.out.println("This is message2.");
 message1();

 System.out.println("Done with message2.");
}

public static void message1() {
 System.out.println("This is message1.");
}

Control flow

Copyright 2014 by Pearson Education
18

When to use methods
�  Place statements into a static method if:

�  The statements are related structurally, and/or
�  The statements are repeated.

�  You should not create static methods for:
�  An individual println statement.
�  Only blank lines. (Put blank printlns in main.)
�  Unrelated or weakly related statements.

(Consider splitting them into two smaller methods.)

Copyright 2014 by Pearson Education

Drawing complex figures
with static methods

reading: 1.5
(Ch. 1 Case Study: DrawFigures)

Copyright 2014 by Pearson Education
20

Static methods question
�  Write a program to print these figures using methods.

 / \
/ \
\ /
 ______/

\ /
 ______/
+--------+

 / \
/ \
| STOP |
\ /
 ______/

 / \
/ \
+--------+

Copyright 2014 by Pearson Education
21

Development strategy

 / \
/ \
\ /
 ______/

\ /
 ______/
+--------+

 / \
/ \
| STOP |
\ /
 ______/

 / \
/ \
+--------+

First version (unstructured):

n  Create an empty program and main method.

n  Copy the expected output into it, surrounding
each line with System.out.println syntax.

n  Run it to verify the output.

Copyright 2014 by Pearson Education
22

Program version 1
public class Figures1 {
 public static void main(String[] args) {
 System.out.println(" ______");
 System.out.println(" / \\");
 System.out.println("/ \\");
 System.out.println("\\ /");
 System.out.println(" ______/");
 System.out.println();
 System.out.println("\\ /");
 System.out.println(" ______/");
 System.out.println("+--------+");
 System.out.println();
 System.out.println(" ______");
 System.out.println(" / \\");
 System.out.println("/ \\");
 System.out.println("| STOP |");
 System.out.println("\\ /");
 System.out.println(" ______/");
 System.out.println();
 System.out.println(" ______");
 System.out.println(" / \\");
 System.out.println("/ \\");
 System.out.println("+--------+");
 }
}

Copyright 2014 by Pearson Education
23

Development strategy 2

 / \
/ \
\ /
 ______/

\ /
 ______/
+--------+

 / \
/ \
| STOP |
\ /
 ______/

 / \
/ \
+--------+

Second version (structured, with redundancy):

n  Identify the structure of the output.

n  Divide the main method into static methods
based on this structure.

Copyright 2014 by Pearson Education
24

Output structure

 / \
/ \
\ /
 ______/

\ /
 ______/
+--------+

 / \
/ \
| STOP |
\ /
 ______/

 / \
/ \
+--------+

The structure of the output:
n  initial "egg" figure
n  second "teacup" figure
n  third "stop sign" figure
n  fourth "hat" figure

This structure can be represented by methods:
n  egg

n  teaCup

n  stopSign

n  hat

Copyright 2014 by Pearson Education
25

Program version 2
public class Figures2 {
 public static void main(String[] args) {
 egg();
 teaCup();
 stopSign();
 hat();
 }

 public static void egg() {
 System.out.println(" ______");
 System.out.println(" / \\");
 System.out.println("/ \\");
 System.out.println("\\ /");
 System.out.println(" ______/");
 System.out.println();
 }

 public static void teaCup() {
 System.out.println("\\ /");
 System.out.println(" ______/");
 System.out.println("+--------+");
 System.out.println();
 }
 ...

Copyright 2014 by Pearson Education
26

Program version 2, cont'd.
 ...

 public static void stopSign() {
 System.out.println(" ______");
 System.out.println(" / \\");
 System.out.println("/ \\");
 System.out.println("| STOP |");
 System.out.println("\\ /");
 System.out.println(" ______/");
 System.out.println();
 }

 public static void hat() {
 System.out.println(" ______");
 System.out.println(" / \\");
 System.out.println("/ \\");
 System.out.println("+--------+");
 }
}

Copyright 2014 by Pearson Education
27

Development strategy 3

 / \
/ \
\ /
 ______/

\ /
 ______/
+--------+

 / \
/ \
| STOP |
\ /
 ______/

 / \
/ \
+--------+

Third version (structured, without redundancy):

n  Identify redundancy in the output, and create
methods to eliminate as much as possible.

n  Add comments to the program.

Copyright 2014 by Pearson Education
28

Output redundancy

The redundancy in the output:

n  egg top: reused on stop sign, hat
n  egg bottom: reused on teacup, stop sign
n  divider line: used on teacup, hat

This redundancy can be fixed by methods:
n  eggTop

n  eggBottom

n  line

 / \
/ \
\ /
 ______/

\ /
 ______/
+--------+

 / \
/ \
| STOP |
\ /
 ______/

 / \
/ \
+--------+

Copyright 2014 by Pearson Education
29

Program version 3
// Suzy Student, CSE 138, Spring 2094
// Prints several figures, with methods for structure and redundancy.
public class Figures3 {
 public static void main(String[] args) {
 egg();
 teaCup();
 stopSign();
 hat();
 }

 // Draws the top half of an an egg figure.
 public static void eggTop() {
 System.out.println(" ______");
 System.out.println(" / \\");
 System.out.println("/ \\");
 }

 // Draws the bottom half of an egg figure.
 public static void eggBottom() {
 System.out.println("\\ /");
 System.out.println(" ______/");
 }

 // Draws a complete egg figure.
 public static void egg() {
 eggTop();
 eggBottom();
 System.out.println();
 }

 ...

Copyright 2014 by Pearson Education
30

Program version 3, cont'd.
 ...

 // Draws a teacup figure.
 public static void teaCup() {
 eggBottom();
 line();
 System.out.println();
 }

 // Draws a stop sign figure.
 public static void stopSign() {
 eggTop();
 System.out.println("| STOP |");
 eggBottom();
 System.out.println();
 }

 // Draws a figure that looks sort of like a hat.
 public static void hat() {
 eggTop();
 line();
 }

 // Draws a line of dashes.
 public static void line() {
 System.out.println("+--------+");
 }
}

