
Copyright 2010 by Pearson Education

Building Java Programs

Chapter 7
Lecture 16: Arrays as Parameters, Arrays for

Tallying

reading: 4.3, 7.6

Copyright 2010 by Pearson Education
2

Why did the programmer
quit his job?

Because he didn't get arrays.

Copyright 2010 by Pearson Education
3

Array parameter (declare)
 public static type methodName(type[] name) {

  Example:
 // Returns the average of the given array of numbers.
 public static double average(int[] numbers) {
 int sum = 0;
 for (int i = 0; i < numbers.length; i++) {
 sum += numbers[i];
 }
 return (double) sum / numbers.length;
 }

  You don't specify the array's length (but you can examine it).

Copyright 2010 by Pearson Education
4

Array parameter (call)
 methodName(arrayName);

  Example:
 public class MyProgram {
 public static void main(String[] args) {
 // figure out the average TA IQ
 int[] iq = {126, 84, 149, 167, 95};
 double avg = average(iq);
 System.out.println("Average IQ = " + avg);
 }
 ...

  Notice that you don't write the [] when passing the array.

Copyright 2010 by Pearson Education
5

Array return (declare)
 public static type[] methodName(parameters) {

  Example:
 // Returns a new array with two copies of each value.
 // Example: [1, 4, 0, 7] -> [1, 1, 4, 4, 0, 0, 7, 7]
 public static int[] double(int[] numbers) {
 int[] result = new int[2 * numbers.length];
 for (int i = 0; i < numbers.length; i++) {
 result[2 * i] = numbers[i];
 result[2 * i + 1] = numbers[i];
 }
 return result;
 }

Copyright 2010 by Pearson Education
6

Array return (call)
 type[] name = methodName(parameters);

  Example:
 public class MyProgram {
 public static void main(String[] args) {
 int[] iq = {126, 84, 149, 167, 95};
 int[] doubled = double(iq);
 System.out.println(Arrays.toString(doubled));
 }
 ...

  Output:
 [126, 126, 84, 84, 149, 149, 167, 167, 95, 95]

Copyright 2010 by Pearson Education
7

Array reversal question
  Write code that reverses the elements of an array.

  For example, if the array initially stores:
 [11, 42, -5, 27, 0, 89]

  Then after your reversal code, it should store:
 [89, 0, 27, -5, 42, 11]

  The code should work for an array of any size.

  Hint: think about swapping various elements...

Copyright 2010 by Pearson Education
8

Algorithm idea
  Swap pairs of elements from the edges; work inwards:

index 0 1 2 3 4 5
value 11 42 -5 27 0 89
index 0 1 2 3 4 5
value 89 42 -5 27 0 11
index 0 1 2 3 4 5
value 89 0 -5 27 42 11
index 0 1 2 3 4 5
value 89 0 27 -5 42 11

Copyright 2010 by Pearson Education
9

Swapping values
public static void main(String[] args) {
 int a = 7;
 int b = 35;

 // swap a with b?
 a = b;
 b = a;

 System.out.println(a + " " + b);
}

  What is wrong with this code? What is its output?

  The red code should be replaced with:
 int temp = a;
 a = b;
 b = temp;

Copyright 2010 by Pearson Education
10

Flawed algorithm
  What's wrong with this code?
 int[] numbers = [11, 42, -5, 27, 0, 89];

 // reverse the array
 for (int i = 0; i < numbers.length; i++) {
 int temp = numbers[i];
 numbers[i] = numbers[numbers.length - 1 - i];
 numbers[numbers.length - 1 - i] = temp;
 }

  The loop goes too far and un-reverses the array! Fixed version:
 for (int i = 0; i < numbers.length / 2; i++) {
 int temp = numbers[i];
 numbers[i] = numbers[numbers.length - 1 - i];
 numbers[numbers.length - 1 - i] = temp;
 }

Copyright 2010 by Pearson Education
11

Array reverse question 2
  Turn your array reversal code into a reverse method.

  Accept the array of integers to reverse as a parameter.

 int[] numbers = {11, 42, -5, 27, 0, 89};
 reverse(numbers);

  How do we write methods that accept arrays as parameters?
  Will we need to return the new array contents after reversal?
 ...

Copyright 2010 by Pearson Education
12

Reference semantics
reading: 7.3

12

Copyright 2010 by Pearson Education
13

A swap method?
  Does the following swap method work? Why or why not?

 public static void main(String[] args) {
 int a = 7;
 int b = 35;

 // swap a with b?
 swap(a, b);

 System.out.println(a + " " + b);
 }

 public static void swap(int a, int b) {
 int temp = a;
 a = b;
 b = temp;
 }

Copyright 2010 by Pearson Education
14

Value semantics
  value semantics: Behavior where values are copied

when assigned, passed as parameters, or returned.

  All primitive types in Java use value semantics.
  When one variable is assigned to another, its value is copied.
  Modifying the value of one variable does not affect others.

 int x = 5;
 int y = x; // x = 5, y = 5
 y = 17; // x = 5, y = 17
 x = 8; // x = 8, y = 17

Copyright 2010 by Pearson Education
15

Reference semantics (objects)
  reference semantics: Behavior where variables actually

store the address of an object in memory.

  When one variable is assigned to another, the object is
not copied; both variables refer to the same object.

  Modifying the value of one variable will affect others.

 int[] a1 = {4, 15, 8};
 int[] a2 = a1; // refer to same array as a1
 a2[0] = 7;
 System.out.println(Arrays.toString(a1)); // [7, 15, 8]

inde
x

0 1 2

valu
e

4 15 8

inde
x

0 1 2

valu
e

7 15 8
a1 a2

Copyright 2010 by Pearson Education
16

References and objects
  Arrays and objects use reference semantics. Why?

  efficiency. Copying large objects slows down a program.
  sharing. It's useful to share an object's data among methods.

 DrawingPanel panel1 = new DrawingPanel(80, 50);

 DrawingPanel panel2 = panel1; // same window
 panel2.setBackground(Color.CYAN);

panel1

panel2

Copyright 2010 by Pearson Education
17

Objects as parameters
  When an object is passed as a parameter, the object is

not copied. The parameter refers to the same object.
  If the parameter is modified, it will affect the original object.

public static void main(String[] args) {
 DrawingPanel window = new DrawingPanel(80, 50);
 window.setBackground(Color.YELLOW);
 example(window);
}

public static void example(DrawingPanel panel) {
 panel.setBackground(Color.CYAN);
 ...
}

panel

window

Copyright 2010 by Pearson Education
18

Arrays pass by reference
  Arrays are passed as parameters by reference.

  Changes made in the method are also seen by the caller.

 public static void main(String[] args) {
 int[] iq = {126, 167, 95};
 increase(iq);
 System.out.println(Arrays.toString(iq));
 }
 public static void increase(int[] a) {
 for (int i = 0; i < a.length; i++) {
 a[i] = a[i] * 2;
 }
 }

  Output:
 [252, 334, 190]

index 0 1 2

value 126 167 95

index 0 1 2

value 252 334 190

iq

a

Copyright 2010 by Pearson Education
19

Array reverse question 2
  Turn your array reversal code into a reverse method.

  Accept the array of integers to reverse as a parameter.

 int[] numbers = {11, 42, -5, 27, 0, 89};
 reverse(numbers);

  Solution:
 public static void reverse(int[] numbers) {
 for (int i = 0; i < numbers.length / 2; i++) {
 int temp = numbers[i];
 numbers[i] = numbers[numbers.length - 1 - i];
 numbers[numbers.length - 1 - i] = temp;
 }
 }

Copyright 2010 by Pearson Education
20

Array parameter questions
  Write a method swap that accepts an arrays of integers

and two indexes and swaps the elements at those
indexes.
 int[] a1 = {12, 34, 56};
 swap(a1, 1, 2);
 System.out.println(Arrays.toString(a1)); // [12, 56, 34]

  Write a method swapAll that accepts two arrays of
integers as parameters and swaps their entire contents.

  Assume that the two arrays are the same length.

 int[] a1 = {12, 34, 56};
 int[] a2 = {20, 50, 80};
 swapAll(a1, a2);
 System.out.println(Arrays.toString(a1)); // [20, 50, 80]
 System.out.println(Arrays.toString(a2)); // [12, 34, 56]

Copyright 2010 by Pearson Education
21

Array parameter answers
// Swaps the values at the given two indexes.
public static void swap(int[] a, int i, int j) {
 int temp = a[i];
 a[i] = a[j];
 a[j] = temp;
}

// Swaps the entire contents of a1 with those of a2.
public static void swapAll(int[] a1, int[] a2) {
 for (int i = 0; i < a1.length; i++) {
 int temp = a1[i];
 a1[i] = a2[i];
 a2[i] = temp;
 }
}

Copyright 2010 by Pearson Education
22

Array return question
  Write a method merge that accepts two arrays of integers

and returns a new array containing all elements of the
first array followed by all elements of the second.
 int[] a1 = {12, 34, 56};
 int[] a2 = {7, 8, 9, 10};

 int[] a3 = merge(a1, a2);
 System.out.println(Arrays.toString(a3));
 // [12, 34, 56, 7, 8, 9, 10]

  Write a method merge3 that merges 3 arrays similarly.
 int[] a1 = {12, 34, 56};
 int[] a2 = {7, 8, 9, 10};
 int[] a3 = {444, 222, -1};

 int[] a4 = merge3(a1, a2, a3);
 System.out.println(Arrays.toString(a4));
 // [12, 34, 56, 7, 8, 9, 10, 444, 222, -1]

Copyright 2010 by Pearson Education
23

Array return answer 1
// Returns a new array containing all elements of a1
// followed by all elements of a2.
public static int[] merge(int[] a1, int[] a2) {
 int[] result = new int[a1.length + a2.length];

 for (int i = 0; i < a1.length; i++) {
 result[i] = a1[i];
 }
 for (int i = 0; i < a2.length; i++) {
 result[a1.length + i] = a2[i];
 }

 return result;
}

Copyright 2010 by Pearson Education
24

Array return answer 2
// Returns a new array containing all elements of a1,a2,a3.
public static int[] merge3(int[] a1, int[] a2, int[] a3) {
 int[] a4 = new int[a1.length + a2.length + a3.length];

 for (int i = 0; i < a1.length; i++) {
 a4[i] = a1[i];
 }
 for (int i = 0; i < a2.length; i++) {
 a4[a1.length + i] = a2[i];
 }
 for (int i = 0; i < a3.length; i++) {
 a4[a1.length + a2.length + i] = a3[i];
 }

 return a4;
}

// Shorter version that calls merge.
public static int[] merge3(int[] a1, int[] a2, int[] a3) {
 return merge(merge(a1, a2), a3);
}

Copyright 2010 by Pearson Education
25

Value/Reference Semantics
  Variables of primitive types store values directly:

  Values are copied from one variable to another:
 cats = age;

  Variables of object types store references to memory:

  References are copied from one variable to another:
 scores = grades;

index 0 1 2

value 89 78 93

age 20 cats 3

age 20 cats 20

grades

scores

Copyright 2010 by Pearson Education

Text processing

reading: 7.2, 4.3

Copyright 2010 by Pearson Education
27

String traversals
  The chars in a String can be accessed using the charAt

method.
  accepts an int index parameter and returns the char at that index

 String food = "cookie";
 char firstLetter = food.charAt(0); // 'c'

 System.out.println(firstLetter + " is for " + food);

  You can use a for loop to print or examine each character.
 String major = "CSE";
 for (int i = 0; i < major.length(); i++) { // output:
 char c = major.charAt(i); // C
 System.out.println(c); // S
 } // E

Copyright 2010 by Pearson Education
28

A multi-counter problem
  Problem: Write a method mostFrequentDigit that

returns the digit value that occurs most frequently in a
number.

  Example: The number 669260267 contains:
 one 0, two 2s, four 6es, one 7, and one 9.

 mostFrequentDigit(669260267) returns 6.

  If there is a tie, return the digit with the lower value.
 mostFrequentDigit(57135203) returns 3.

Copyright 2010 by Pearson Education
29

A multi-counter problem
  We could declare 10 counter variables ...

 int counter0, counter1, counter2, counter3, counter4,

 counter5, counter6, counter7, counter8, counter9;

  But a better solution is to use an array of size 10.
  The element at index i will store the counter for digit value i.
  Example for 669260267:

  How do we build such an array? And how does it help?

inde
x

0 1 2 3 4 5 6 7 8 9

valu
e

1 0 2 0 0 0 4 1 0 0

Copyright 2010 by Pearson Education
30

Creating an array of tallies
 // assume n = 669260267
 int[] counts = new int[10];
 while (n > 0) {
 // pluck off a digit and add to proper counter
 int digit = n % 10;
 counts[digit]++;
 n = n / 10;
 }

inde
x

0 1 2 3 4 5 6 7 8 9

valu
e

1 0 2 0 0 0 4 1 0 0

Copyright 2010 by Pearson Education
31

Tally solution
// Returns the digit value that occurs most frequently in n.
// Breaks ties by choosing the smaller value.
public static int mostFrequentDigit(int n) {
 int[] counts = new int[10];
 while (n > 0) {
 int digit = n % 10; // pluck off a digit and tally it
 counts[digit]++;
 n = n / 10;
 }

 // find the most frequently occurring digit
 int bestIndex = 0;
 for (int i = 1; i < counts.length; i++) {
 if (counts[i] > counts[bestIndex]) {
 bestIndex = i;
 }
 }

 return bestIndex;
}

Copyright 2010 by Pearson Education
32

Section attendance question
  Read a file of section attendance (see next slide):

yynyyynayayynyyyayanyyyaynayyayyanayyyanyayna
ayyanyyyyayanaayyanayyyananayayaynyayayynynya
yyayaynyyayyanynnyyyayyanayaynannnyyayyayayny

  And produce the following output:
Section 1
Student points: [30, 27, 29, 24, 19]
Student grades: [100.0, 90.0, 96.7, 80.0, 63.3]

Section 2
Student points: [27, 30, 24, 24, 14]
Student grades: [90.0, 100.0, 80.0, 80.0, 46.6]

Section 3
Student points: [27, 26, 27, 30, 24]
Student grades: [90.0, 86.7, 90.0, 100.0, 80.0]

•  Students earn 5 points for each section attended up to 30.

Copyright 2010 by Pearson Education
33

  Each line represents a section.
  A line consists of 9 weeks' worth of data.

  Each week has 5 characters because there are 5 students.

  Within each week, each character represents one student.
  a means the student was absent (+0 points)
  n means they attended but didn't do the problems (+2 points)
  y means they attended and did the problems (+5 points)

Section input file

yynyyynayayynyyyayanyyyaynayyayyanayyyanyay

ayyanyyyyayanaayyanayyyananayayaynyayayynyn

yyayaynyyayyanynnyyyayyanayaynannnyyayyayay

week 1 2 3 4 5 6 7 8 9

student 1234512345123451234512345123451234512345123

section 1
section 2
section 3

Copyright 2010 by Pearson Education
34

Section attendance answer
import java.io.*;
import java.util.*;

public class Sections {
 public static void main(String[] args) throws FileNotFoundException {
 Scanner input = new Scanner(new File("sections.txt"));
 int section = 1;
 while (input.hasNextLine()) {
 String line = input.nextLine(); // process one section
 int[] points = new int[5];
 for (int i = 0; i < line.length(); i++) {
 int student = i % 5;
 int earned = 0;
 if (line.charAt(i) == 'y') { // c == 'y' or 'n' or 'a'
 earned = 5;
 } else if (line.charAt(i) == 'n') {
 earned = 2;
 }
 points[student] = Math.min(30, points[student] + earned);
 }

 double[] grades = new double[5];
 for (int i = 0; i < points.length; i++) {
 grades[i] = 100.0 * points[i] / 20.0;
 }

 System.out.println("Section " + section);
 System.out.println("Student points: " + Arrays.toString(points));
 System.out.println("Student grades: " + Arrays.toString(grades));
 System.out.println();
 section++;
 }
 }
}

Copyright 2010 by Pearson Education
35

Data transformations
  In many problems we transform data between forms.

  Example: digits → count of each digit → most frequent digit
  Often each transformation is computed/stored as an array.
  For structure, a transformation is often put in its own method.

  Sometimes we map between data and array indexes.

  by position (store the i th value we read at index i)
  tally (if input value is i, store it at array index i)
  explicit mapping (count 'J' at index 0, count 'X' at index 1)

  Exercise: Modify our Sections program to use static
methods that use arrays as parameters and returns.

Copyright 2010 by Pearson Education
36

Array param/return answer
// This program reads a file representing which students attended
// which discussion sections and produces output of the students'
// section attendance and scores.

import java.io.*;
import java.util.*;

public class Sections2 {
 public static void main(String[] args) throws FileNotFoundException {
 Scanner input = new Scanner(new File("sections.txt"));
 int section = 1;
 while (input.hasNextLine()) {
 // process one section
 String line = input.nextLine();
 int[] points = countPoints(line);
 double[] grades = computeGrades(points);
 results(section, points, grades);
 section++;
 }
 }

 // Produces all output about a particular section.
 public static void results(int section, int[] points, double[] grades) {
 System.out.println("Section " + section);
 System.out.println("Student scores: " + Arrays.toString(points));
 System.out.println("Student grades: " + Arrays.toString(grades));
 System.out.println();
 }

 ...

Copyright 2010 by Pearson Education
37

Array param/return answer
 ...

 // Computes the points earned for each student for a particular section.
 public static int[] countPoints(String line) {
 int[] points = new int[5];
 for (int i = 0; i < line.length(); i++) {
 int student = i % 5;
 int earned = 0;
 if (line.charAt(i) == 'y') { // c == 'y' or c == 'n'
 earned = 3;
 } else if (line.charAt(i) == 'n') {
 earned = 2;
 }
 points[student] = Math.min(20, points[student] + earned);
 }
 return points;
 }

 // Computes the percentage for each student for a particular section.
 public static double[] computeGrades(int[] points) {
 double[] grades = new double[5];
 for (int i = 0; i < points.length; i++) {
 grades[i] = 100.0 * points[i] / 20.0;
 }
 return grades;
 }
}

