
Building Java Programs

Chapter 7

Lecture 7-3: Arrays for Tallying; Text Processing

reading: 7.6, 4.3

2

A multi-counter problem
 Problem: Write a method mostFrequentDigit that returns

the digit value that occurs most frequently in a number.

 Example: The number 669260267 contains:
one 0, two 2s, four 6es, one 7, and one 9.

mostFrequentDigit(669260267) returns 6.

 If there is a tie, return the digit with the lower value.

mostFrequentDigit(57135203) returns 3.

3

A multi-counter problem
 We could declare 10 counter variables ...

int counter0, counter1, counter2, counter3, counter4,

counter5, counter6, counter7, counter8, counter9;

 A better solution is to use an array of size 10.

 The element at index i will store the counter for digit value i.

 Example for 669260267:

index 0 1 2 3 4 5 6 7 8 9

value 1 0 2 0 0 0 4 1 0 0

4

Creating an array of tallies

// n is an int, e.g. 669260267

int[] counts = new int[10];

while (n > 0) {

// pluck off a digit and add to proper counter

int digit = n % 10;

counts[digit]++;

n = n / 10;

}

index 0 1 2 3 4 5 6 7 8 9

value 1 0 2 0 0 0 4 1 0 0

5

Tally solution
// Returns the digit value that occurs most frequently in n.

// Breaks ties by choosing the smaller value.

public static int mostFrequentDigit(int n) {

int[] counts = new int[10];

while (n > 0) {

int digit = n % 10; // pluck off a digit and tally it

counts[digit]++;

n = n / 10;

}

// find the most frequently occurring digit

int bestIndex = 0;

for (int i = 1; i < counts.length; i++) {

if (counts[i] > counts[bestIndex]) {

bestIndex = i;

}

}

return bestIndex;

}

6

Array histogram question
 Given a file of integer exam scores, such as:

82

66

79

63

83

Write a program that will print a histogram of stars indicating
the number of students who earned each unique exam score.

85: *****

86: ************

87: ***

88: *

91: ****

7

Array histogram answer
// Reads a file of test scores and shows a histogram of the score distribution.

import java.io.*;

import java.util.*;

public class Histogram {

public static void main(String[] args) throws FileNotFoundException {

Scanner input = new Scanner(new File("midterm.txt"));

int[] counts = new int[101]; // counters of test scores 0 - 100

while (input.hasNextInt()) { // read file into counts array

int score = input.nextInt();

counts[score]++; // if score is 87, then counts[87]++

}

for (int i = 0; i < counts.length; i++) { // print star histogram

if (counts[i] > 0) {

System.out.print(i + ": ");

for (int j = 0; j < counts[i]; j++) {

System.out.print("*");

}

System.out.println();

}

}

}

}

8

Histogram exercise variation

 Variations:

 Make a curve that adds
a fixed number of points
to each score. (But
don't allow a curved
score to exceed the max
of 100.)

 Chart the data with a
DrawingPanel.

9

Histogram: Solution
...

// use a DrawingPanel to draw the histogram

DrawingPanel p = new DrawingPanel(counts.length * 3 + 6, 200);

Graphics g = p.getGraphics();

g.setColor(Color.BLACK);

for (int i = 0; i < counts.length; i++) {

g.drawLine(i * 3 + 3, 175, i * 3 + 3, 175 - 5 * counts[i]);

}

...

Text processing

reading: 4.3

11

String traversals
 Strings are represented internally as arrays of chars.

 We can write algorithms to traverse strings to compute
information.

 What useful information might the following string have?

"IDRIRRIDRRIDMIDIRRRIRIRIIDIDDRDDRRDIDIID"

index 0 1 2 3 4 5 6

value 'l' 'e' 't' 't' 'e' 'r' 's'

12

Down with the Marty Party!
// string stores voters' votes

// (R)EPUBLICAN, (D)EMOCRAT, (I)NDEPENDENT, (M)ARTY

String votes = "IDRIRRIDRRIDMIDIRRRIRIRIIDIDDRDDRRDIDIID";

int[] counts = new int[4]; // R -> 0, D -> 1, I -> 2, M -> 3

for (int i = 0; i < votes.length(); i++) {

char c = votes.charAt(i);

if (c == 'R') {

counts[0]++;

} else if (c == 'D') {

counts[1]++;

} else if (c == 'I') {

counts[2]++;

} else { // c == 'M'

counts[3]++;

}

}

System.out.println(Arrays.toString(counts));

Output:
[13, 12, 14, 1]

13

Section attendance question
 Read a file of section attendance (see next slide):

yynyyynayayynyyyayanyyyaynayyayyanayyyanyayna

ayyanyyyyayanaayyanayyyananayayaynyayayynynya

yyayaynyyayyanynnyyyayyanayaynannnyyayyayayny

 And produce the following output:

Section 1

Student points: [20, 16, 17, 14, 11]

Student grades: [100.0, 80.0, 85.0, 70.0, 55.0]

Section 2

Student points: [16, 19, 14, 14, 8]

Student grades: [80.0, 95.0, 70.0, 70.0, 40.0]

Section 3

Student points: [16, 15, 16, 18, 14]

Student grades: [80.0, 75.0, 80.0, 90.0, 70.0]

• Students earn 3 points for each section attended up to 20.

14

 Each line represents a section.

 A line consists of 9 weeks' worth of data.

 Each week has 5 characters because there are 5 students.

 Within each week, each character represents one student.

 a means the student was absent (+0 points)

 n means they attended but didn't do the problems (+1 points)

 y means they attended and did the problems (+3 points)

Section input file

yynyyynayayynyyyayanyyyaynayyayyanayyyanyayna

ayyanyyyyayanaayyanayyyananayayaynyayayynynya

yyayaynyyayyanynnyyyayyanayaynannnyyayyayayny

week 1 2 3 4 5 6 7 8 9

student 123451234512345123451234512345123451234512345

section 1

section 2

section 3

15

Section attendance answer 1
// This program reads a file representing which students attended
// which discussion sections and produces output of the students'
// section attendance and scores.

import java.io.*;
import java.util.*;

public class Sections {
public static void main(String[] args) throws FileNotFoundException {

Scanner input = new Scanner(new File("sections.txt"));
int section = 1;
while (input.hasNextLine()) {

// process one section
String line = input.nextLine();
int[] points = countPoints(line);
double[] grades = computeGrades(points);
results(section, points, grades);
section++;

}
}

// Produces all output about a particular section.
public static void results(int section, int[] points, double[] grades) {

System.out.println("Section " + section);
System.out.println("Student scores: " + Arrays.toString(points));
System.out.println("Student grades: " + Arrays.toString(grades));
System.out.println();

}

...

16

Section attendance answer 2
...

// Computes the points earned for each student for a particular section.
public static int[] countPoints(String line) {

int[] points = new int[5];
for (int i = 0; i < line.length(); i++) {

int earned = 0;
char c = line.charAt(i);
if (c == 'y') { // c == 'y' or 'n' or 'a'

earned = 3;
} else if (c == 'n') {

earned = 1;
}
int student = i % 5;
points[student] = Math.min(20, points[student] + earned);

}
return points;

}

// Computes the percentage for each student for a particular section.
public static double[] computeGrades(int[] points) {

double[] grades = new double[points.length];
for (int i = 0; i < points.length; i++) {

grades[i] = 100.0 * points[i] / 20.0;
}
return grades;

}
}

17

Data transformations
 In many problems we transform data between forms.

 Example: digits count of each digit most frequent digit

 Often each transformation is computed/stored as an array.

 For structure, a transformation is often put in its own method.

 Sometimes we map between data and array indexes.

 by position (store the i th value we read at index i)

 tally (if input value is i, store it at array index i)

 explicit mapping (count 'J' at index 0, count 'X' at index 1)

