Building Java Programs

Chapter 5
Lecture 5-2: Random Numbers; procedural design

reading: 5.1, 5.6, 4.5

o

—

TOUR OF ACCOUNTING |§ il ame

3 NINE NINE | Ry THAT'S THE
OVER HERE : NINE NINE H Py PROBLEM
LJE HAVE OUR 3 NINE NINE | THATS WITH RAN-
RANDOM NUMBER |§ | RaNDOM? DOMNESS

] YOU CAN

GENERATOR..

5 H R NEVER BE

(3] s

= -

2 g

S %

£ =l

int get RandomNumber ()

return 4. // chosen by fair dice roll.
// quaranteed to be random.

http://xkcd.com/221/

http://xkcd.com/221/

i

The Random class

* A Random object generates pseudo-random numbers.
e Class Random is found in the java.util package.

TMP O eV an b dvkan s

Method name Description
= e) returns a random integer
nextInt (maxX) returns a random integer in the range [0, max)
in other words, 0 to max-1 inclusive
nextDouble () returns a random real number in the range [0.0, 1.0)
 Example:

Random rand = new Random{() ;
int randomNumber = rand.nextInt (10); // 0-9

Generating random numbers

e Common usage: to get a random number from 1 to N

int n = rand.nextInt(20) + 1; // 1-20 inclusive

* To get a number in arbitrary range [min, max] inclusive:

name.nextInt (size of range) + min

« Where size of range is (max - min + 1)

« Example: A random integer between 4 and 10 inclusive:

InEvny v rand.nextint (1) 4+ 4:

///ﬁm :
Random questions

e Given the following declaration, how would you get:
Random rand = new Random{() ;

« A random number between 1 and 47 inclusive?
el e e e e e e L e

e A random number between 23 and 30 inclusive?
TR vrandomzi i s ranadsnes b8t

e A random even number between 4 and 12 inclusive?
TRt v random3i s vrandinex e Tobith)2

Random and other types

* nextDouble method returns a double between [0.0, 1.0)

« Example: Get a random GPA value between [1.5, 4.0):
ol el e s tand neRthonbla e o

* Any set of possible values can be mapped to integers
» code to randomly play Rock-Paper-Scissors:

THE = rand o E T3
ey

System.out.println ("Rock") ;
sl e e

oV E AT YU B e e i R U A SR W e
e

SyisEemaouty prEntin e cil Ssors)y

}

Random question

 Write a program that simulates rolling two 6-sided dice
until their combined result comes up as 7.

Rl =g
Frpbi—in g
B =
i
didv =

Yourwonvatfter St ries!

e

Random answer

// Rolls two dice until a sum of 7 is reached.
e ey a e

public class Dice {
el TSR RN e
Random rand = new Random() ;
TnEvtpieg e

int sum = 0; // anything but 7 to start the loop
while (sum != 7) {

// roll the dice once

int rolll = rand.nextInt(6) + 1;

int roll2 = rand.nextInt(6) + 1;

sum = rolll + roll2;

o A AU It s b ey o Wil A AT Rl A A s S AR SR W oA A SR AR AR A R
S A M IS ke

}

A e e U O U G R DV G AT A S TR G Y S S e PO DO s D e S e g 59 S e

/ m
Random question

 Write a program that plays an adding game.

» Ask user to solve random adding problems with 2-5 numbers
in the range from 1 - 10.

» The user gets 1 point for a correct answer, 0 for incorrect.
 The program stops after 3 incorrect answers.

i e R e e

9 + 2 =11
8+6+7+9=2_5
Wrong! The answer was 30
Gupgrna 3

Wrong! The answer was 14
e

S S e S e S

e L e
Wrong! The answer was 32
You earned 4 total points

 —

Random answer

// Asks the user to do adding problems and scores them.
A1} oo e WA 9 B0y b wha A e

public class AddingGame {
publichstatyc voldimatntatring bl vargeyiid
Scanner console = new Scanner (System.in);
Random rand = new Random() ;

// play until user gets 3 wrong
18t aid oo WD ahnds e - il 617
int wrong = 0;
while (wrong < 3) {
int result = play(console, rand); // play one game
if (result == 0) {
wrong++;
} else {
pornEstrs
}
}

SvshemTontvprinblinitrolvearned i arapodis s b o tad i p o R e v

10

Random answer 2

// Builds one addition problem and presents it to the user.
// Returns 1 point if you get it right, 0 if wrong.
public static int play(Scanner console, Random rand) {

// print the operands being added, and sum them

int operands = rand.nextInt(4) + 2;

N R s L R B o S SRR A B A O e e s

System.out.print (sum) ;

e Giona i e e R N oY S O Vet e e
int n = rand.nextInt (10) + 1;
sum += n;
Sy S e OB E i e ey

}

A A=y PO A Rts o R i § Wl e

// read user's guess and report whether it was correct

int guess = console.nextInt();
if (guess == sum) {
return 1;
} else {
System.out.println ("Wrong! The answer was " + total);

= 1 0 o 1 A O

Procedural design

reading: 4.5

——
Recall: BMI program
Formula for body mass index (BMI): beIOWM118_5 L":\Z;grt'v';g::s
weight 18.5 - 24.9 | normal
BMI = o ?\t x 703 25.0 - 29.9 | overweight
d 30.0 and up | obese

* Write a program that produces output like the following:

This program reads data for two people and
computes their body mass index (BMI).

Enter next person's information:
height (in inches)? 70.0
weight (in pounds)? 194.25

Enter next person's information:
height (in inches)? 62.5
NercliTerii e ponnd s yree gk 3eeh

Person 1 BMI = 27.868928571428572
overweight

Person 2 BMI = 23.485824

normal

Difference = 4.3831045714285715

1.3

—

"Chaining"

* main should be a concise summary of your program.

o It is bad if each method calls the next without ever returning
(we call this chaining):

e IR

\

methodA

\

methodB ey

methodC -

methodD

* A better structure has main make most of the calls.
* Methods must return values to main to be passed on later.

main

=

methodA

N\

methodB

methodD

methodC

14

B
Bad "chain" code

publicrolass T BMTw]
pablicistatieivordimarnitSEring il args)iid
Sy stremyoubrprintintPhrsvprogranireadsiirirente ey
Scanner console = new Scanner (System.in);
person (console) ;

}

public static void person (Scanner console) {

System.out.println ("Enter next person's information:");
System.out.print ("height (in inches)? ");
double height = console.nextDouble () ;

getWeight (console, height);
}

public static void getWeight (Scanner console, double height) {
System.out.print ("weight (in pounds)? ");
double weight = console.nextDouble () ;
computeBMI (console, height, weight) ;

}

public static void computeBMI (Scanner s, double h, double w) {

}

155

Procedural heuristics

1. Each method should have a clear set of responsibilities.
2. No method should do too large a share of the overall task.
3. Minimize coupling and dependencies between methods.

4. The main method should read as a concise summary of
the overall set of tasks performed by the program.

5. Data should be declared/used at the lowest level possible.

16

