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CSE 142, Spring 2014 
Programming Assignment #8: Critters (20 points) 

Due: Tuesday, June 3, 2014, 9:00 PM 

(To be in tournament, Husky must be submitted by Thursday, June 5, 2014, 8:00 PM) 

This assignment focuses on classes and objects.  Turn in Ant.java, Bird.java, Hippo.java, Vulture.java, and 

Husky.java.  Download supporting files on the course web site.  Run CritterMain.java to start the simulation. 

Program Behavior: 
You are provided with several client program classes that implement a 

graphical simulation of a 2D world of animals.  You will write classes that 

define the behavior of those animals.  Animals move and behave in different 

ways.  Your classes will define the unique behaviors for each animal. 

The critter world is divided into cells with integer coordinates.  The world is 

60 cells wide and 50 cells tall.  The upper-left cell has coordinates (0, 0);       

x increases to the right and y increases downward. 

Movement 
On each round of the simulation, the simulator asks each critter object which direction it wants to move.  Each round a 

critter can move one square north, south, east, west, or stay at its current location ("center").  The world has a finite size, 

but it wraps around in all four directions (for example, moving east from the right edge brings you back to the left edge). 

This program will be confusing at first, because you do not write its main method; your code is not in control of the 

overall execution.  Instead, your objects are part of a larger system.  You might want your critters make several moves at 

once using a loop, but you can't.  The only way a critter moves is to wait for the simulator to ask it for a single move and 

return that move.  This experience can be frustrating, but it is a good introduction to object-oriented programming. 

Fighting/Mating 
As the simulation runs, animals may collide by moving onto the same location.  When two animals collide, if they are 

from different species, they fight.  The winning animal survives and the losing animal is removed from the game.  Each 

animal chooses one of Attack.ROAR, Attack.POUNCE, or Attack.SCRATCH.  Each attack is strong against one other 

(e.g. roar beats scratch) and weak against another (roar loses to pounce).  The following table summarizes the choices and 

which animal will win in each case.  To remember which beats which, notice that the starting letters of "Roar, Pounce, 

Scratch" match those of "Rock, Paper, Scissors."  If the animals make the same choice, the winner is chosen at random. 

  Critter #2 

  Attack.ROAR Attack.POUNCE Attack.SCRATCH 

Critter #1 Attack.ROAR random winner #2 wins #1 wins 
Attack.POUNCE #1 wins random winner #2 wins 
Attack.SCRATCH #2 wins #1 wins random winner 

If two animals of the same species collide, they "mate" to produce a baby.  Animals are vulnerable to attack while mating: 

any other animal that collides with them will defeat them.  An animal can mate only once during its lifetime. 

Eating 

The simulation world also contains food (represented by the period character, ".") for the animals to eat.  There are 

pieces of food on the world initially, and new food slowly grows into the world over time.  As an animal moves, it may 

encounter food, in which case the simulator will ask your animal whether it wants to eat it.  Different kinds of animals 

have different eating behavior; some always eat, and others only eat under certain conditions. 

Every time one class of animals eats a few pieces of food, that animal will be put to "sleep" by the simulator for a small 

amount of time.  While asleep, animals cannot move, and if they enter a fight with another animal, they will always lose. 

Scoring 
The simulator keeps a score for each class of animal, shown on the right side of the screen.  A class's score is based on 

how many animals of that class are alive, how much food they have eaten, and how many other animals they have killed. 
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Provided Files: 
Each class you write will extend a superclass named Critter.  This is an example of inheritance, as discussed in Ch. 9 

of the textbook.  Inheritance makes it easier for our code to talk to your critter classes, and it helps us be sure that all your 

animal classes will implement all the methods we need.  Your class headers should indicate the inheritance by writing 

extends Critter, like the following: 

public class Ant extends Critter { ... 

The Critter class contains the following methods,  some/all of which you must write in each of your classes: 

 public boolean eat() 

When your animal encounters food, our code calls this on it to ask whether it wants to eat (true) or not (false). 

 public Attack fight(String opponent) 

When two animals move onto the same square of the grid, they fight.  When they collide, our code calls this on 

each animal to ask it what kind of attack it wants to use in a fight with the given opponent. 

 public Color getColor() 

Every time the board updates, our code calls this on your animal to ask it what color it wants to be drawn with. 

 public Direction getMove() 

Every time the board updates, our code calls this on your animal to ask it which way it wants to move. 

 public String toString() 

Every time the board updates, our code calls this on your animal to ask what letter it should be drawn as. 

Just by writing extends Critter as shown above, you receive a default version of these methods.  The default behavior 

is to never eat, to always forfeit fights, to use the color black, to always stand still (a move of Direction.CENTER), and 

a toString of "?".  If you don't want this default, rewrite (override) the methods in your class with your own behavior. 

For example, below is a critter class Stone.  A Stone is displayed with the letter S, is gray in color, never moves or eats, 

and always roars in a fight.  Your classes will look like this class, except with fields, a constructor, and more sophisticated 

code.  The Stone does not need an eat or getMove method; it uses the default behavior for those operations. 

import java.awt.*;   // for Color  
 
public class Stone extends Critter {  
    public Attack fight(String opponent) {  
        return Attack.ROAR;  
    }  
     
    public Color getColor() {  
        return Color.GRAY;  
    }  
     
    public String toString() {  
        return "S";  
    }  
} 

NOTE: You are not necessarily required to write  extends Critter  on every single animal class you write.  If you find 

that two animal classes are very similar to each other, you should have one extend the other to reduce redundancy. 

 

Running the Simulator: 
When you press the Go button, it begins a series of turns.  On each turn, the simulator does the following for each animal: 

 move the animal once (calling its getMove method), in random order 

 if the animal has moved onto an occupied square, fight!  (call both animals' fight methods) or mate 

 if the animal has moved onto food, ask it if it wants to eat (call the animal's eat method) 

After moving all animals, the simulator redraws the screen, asking each animal for its toString and getColor values.  

It can be difficult to test and debug with many animals.  We suggest adjusting the initial settings to use a smaller world 

and fewer animals.  There is also a Debug checkbox that, when checked, prints console output about the game behavior. 
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Critter Classes: 
The following are the five animal classes to implement.  Each has one constructor that accepts exactly the parameter(s) in 

the table.  For random moves, each choice must be equally likely; use a Random object or the Math.random method. 

 

1.  Ant   

constructor public Ant(boolean walkSouth) 

 

color red 

eating behavior always returns true 

fighting behavior always scratch 

movement if the Ant was constructed with a walkSouth value of true, then 

    alternates between south and east in a zigzag (S, E, S, E, ...);   otherwise, 

if the Ant was constructed with a walkSouth value of false, then 

    alternates between north and east in a zigzag (N, E, N, E, ...) 

toString "%"   (percent) 

 

2.  Bird   

constructor public Bird() 

 

color blue 

eating behavior never eats (always returns false) 

fighting behavior roars if the opponent looks like an Ant ("%"); otherwise pounces 

movement a clockwise square: first goes north 3 times, then east 3 times, 

then south 3 times, then west 3 times, then repeats 

toString "^"   (caret) if the bird's last move was north or it has not moved; 

">"   (greater-than) if the bird's last move was east; 

"V"   (uppercase letter v) if the bird's last move was south; 

"<"   (less-than) if the bird's last move was west 

 

3.  Hippo   

constructor public Hippo(int hunger) 

 

color gray if the hippo is still hungry (if eat would return true); otherwise white 

eating behavior returns true the first hunger times it is called, and false after that 

fighting behavior if this Hippo is hungry (if eat would return true), then scratches; else pounces 

movement moves 5 steps in a random direction (north, south, east, or west), 

then chooses a new random direction and repeats 

toString the number of pieces of food this Hippo still wants to eat, as a String 

The Hippo constructor accepts a parameter for the maximum number of food that Hippo will eat in its lifetime (the 

number of times it will return true from a call to eat).  For example, a Hippo constructed with a parameter value of 8 

will return true the first 8 times eat is called and false after that.  Assume that the value passed is non-negative. 

The toString method for a Hippo returns the number of times that a call to eat that would return true for that Hippo.  

For example, if a new Hippo(4) is constructed, initially its toString return "4".  After eat has been called on it once, 

calls to toString return "3", and so on, until the Hippo is no longer hungry, after which all calls to toString return 

"0".  You can convert a number to a string by concatenating it with an empty string.  For example, "" + 7 makes "7". 

 

(continued on next page) 
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4.  Vulture   

constructor public Vulture() 

 

color black 

eating behavior 

 
Returns true if vulture is hungry.  A vulture is initially hungry, and he remains 

hungry until he eats once.  After eating once he will become non-hungry until he 

gets into a fight.  After one or more fights, he will be hungry again. (see below) 

fighting behavior roars if the opponent looks like an Ant ("%"); otherwise pounces 

movement a clockwise square: first goes north 3 times, then east 3 times, 

then south 3 times, then west 3 times, then repeats 

toString "^"   (caret) if the vulture's last move was north or has not moved; 

">"   (greater-than) if the vulture's last move was east; 

"V"   (uppercase letter v) if the vulture's last move was south; 

"<"   (less-than) if the vulture's last move was west 

A Vulture is a specific sub-category of bird with some changes.  Think of the Vulture as having a "hunger" that is 

enabled when he is first born and also by fighting.  Initially the Vulture is hungry (so eat would return true from a 

single call).  Once the Vulture eats a single piece of food, he becomes non-hungry (so future calls to eat would return 

false).   But if the Vulture gets into a fight or a series of fights (if fight is called on it one or more times), it becomes 

hungry again.  When a Vulture is hungry, the next call to eat should return true.  Eating once causes the Vulture to 

become "full" again so that future calls to eat will return false, until the Vulture's next fight or series of fights. 

5.  Husky  

? constructor public Husky() (must not accept any parameters) 

all behavior you decide (see below) 

You will decide the behavior of your Husky class.  Part of your grade will be based upon writing creative and non-trivial 

Husky behavior.  The following are some guidelines and hints about how to write an interesting Husky. 

Your Husky's fighting behavior may want to utilize the opponent parameter to the fight method, which tells you what 

kind of critter you are fighting against (such as "%" if you are fighting against a Ant).  Your Husky can return any text 

you like from toString (besides null) and any color from getColor.  Each critter's getColor and toString are 

called on each simulation round, so you can have a Husky that displays differently over time.  The toString text is also 

passed to other animals when they fight you; you may want to try to fool other animals. 

Unlike on most assignments, your Husky can use any advanced material you happen to know in Java.  If your Husky 

uses additional classes you have written, contact your TA or instructor to make sure it will be compatible with our system. 

Each critter class has some additional methods that it receives by inheritance from Critter.  Your Husky may want to 

use these methods to guide its behavior.  None of the methods below are needed for Ant, Bird, Hippo, or Vulture. 

 public int getX(), public int getY() 

Returns your critter's current x and y coordinates. 

For example, to check whether your critter's x-coordinate is greater than 10, you would write code such as: 
 

    if (getX() > 10) { 

 public int getWidth(), public int getHeight() 

Returns the width and height of the simulation grid. 

 public String getNeighbor(Direction direction) 

Returns a String representing what is next to your critter in the given direction.  " " means an empty square. 

For example, to check if your neighbor to the west is a "Q", you could write this in your getMove method: 
 

    if (getNeighbor(Direction.WEST).equals("Q")) { 

 public void win(), public void sleep(),  public void mate(), public void reset(), 

public void lose(),  public void wakeup(), public void mateEnd() 

The simulator calls these methods on your critter to notify you when you have won/lost a fight, been put to sleep/ 

wake up, start/end mating, or when the game world has reset, respectively. 
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Development Strategy: 
The simulator runs even if you haven't completed all the critters.  The classes increase in difficulty from Ant to Bird to 

Hippo to Vulture.  We suggest doing Ant first. Look at Stone.java and the lecture/section examples to see the 

general structure. 

It will be impossible to implement each behavior if you don't have the right state in your object.  As you start writing each 

class, spend some time thinking about what state will be needed to achieve the desired behavior. 

One thing that students in the past have found particularly difficult to understand is the various constructors for each type 

of animal.  Some of the constructors accept parameters that guide the behavior of later methods of the animal.  It is your 

job to store data from these parameters into fields of the animal as appropriate, so that it will "remember" the proper 

information and will be able to use it later when the animal's other methods are called by the simulator. 

Test your code incrementally.  A critter class will compile even if you have not written all of the methods (the unwritten 

ones will use default behavior).  So add one method, run the simulator to see that it works, then add another. 

Critter Tournament: 
On the last day of class, we will host a Critter tournament.  In each battle, two students' Husky classes will be placed into 

the simulator along with the other standard animals.  The student with the higher score in the right sidebar advances. 

A "battle" is defined as the following: We run CritterMain with a standard 60x50 world, using 25 of each kind of 

animal.  The animals present are Ants, Birds, Hippos, Vultures, Stones, and two students' Huskys.  We start the 

simulator and let it run until either one student's Huskys are completely eliminated or until roughly 1000 moves have 

passed.  At this point whichever student's Husky species has the more points wins the battle. 

Think of the tournament like one of the major pro sports.  We will run a "regular season" in which every student's Husky 

species will play many battles against randomly chosen opponent Husky classes.  We run a season of many games (at 

least 64 for each student), then we grab the top 16 students that have the best win/loss records.  They advance to the 

"playoffs", which will take place live in lecture on the last day of class. 

The playoffs consists of a 16-Husky bracket similar to part of an NCAA basketball tournament bracket.  Husky #1 battles 

#16, #2 battles #15, and so on. Winners advance and losers are eliminated. Eventually one Husky is the champion. 

No grade points will be based on tournament performance.  For example, a Husky that sits completely still might fare 

well in the tournament, but it will not receive full grade points because it is too trivial. 

Style Guidelines: 
Since this assignment is largely about classes and objects, much of the style grading will be about how well you follow 

proper object-oriented programming style.  You should encapsulate the data inside your objects, and you should not 

declare unnecessary data fields to store information that isn't vital to the state of the object.  Style points will also be 

awarded for expressing each critter's behavior elegantly. 

Another aspect of the style of this program is inheritance.  Your critter classes should properly extend the Critter 

superclass as described.  Inheritance can also be used to remove redundancy between classes that are similar, and you 

should make use of this concept in your classes as appropriate.  In other words, if two of your critter classes A and B are 

very much alike, you should have B extend A rather than having both simply extend Critter. 

Some of the style points for this assignment will be awarded on the basis of how much energy and creativity you put into 

defining an interesting Husky class.  These points allow us to reward the students who spend time writing an interesting 

critter definition.  Your Husky's behavior should not be trivial or closely match that of an existing animal shown in class. 

Follow past style guidelines about indentation, spacing, identifiers, and localizing variables.  Place comments at the 

beginning of each class documenting that critter's behavior, and on any complex code.  Your critters should not produce 

any console output.  For reference, our Ant, Bird, Hippo, and Vulture together occupy just under 199 lines including 

blank lines and comments (117 "substantive" lines, according to our Indenter tool). 

The Husky is not graded on internal correctness at all.  Its code does not need to be commented, can be redundant, and 

can use any advanced material you like, so long as it works properly and obeys the other constraints described previously. 


