
Copyright 2008 by Pearson Education

CSE 142, Spring 2013

Chapter 9

9-3: Polymorphism

reading: 9.3

Copyright 2008 by Pearson Education
2

Copyright 2008 by Pearson Education
3

Polymorphism

 polymorphism: Ability for the same code to be used with

different types of objects and behave differently with each.

 System.out.println can print any type of object.

 Each one displays in its own way on the console.

 CritterMain can interact with any type of critter.

 Each one moves, fights, etc. in its own way.

Copyright 2008 by Pearson Education
4

Coding with polymorphism
 A variable of type T can hold an object of any subclass of T.

Employee ed = new Lawyer();

 You can call any methods from the Employee class on ed.

 When a method is called on ed, it behaves as a Lawyer.

System.out.println(ed.getSalary()); // 50000.0

System.out.println(ed.getVacationForm()); // pink

Copyright 2008 by Pearson Education
5

Polymorphism and parameters

 You can pass any subtype of a parameter's type.

public class EmployeeMain {

public static void main(String[] args) {

Lawyer lisa = new Lawyer();

Secretary steve = new Secretary();

printInfo(lisa);

printInfo(steve);

}

public static void printInfo(Employee empl) {

System.out.println("salary: " + empl.getSalary());

System.out.println("v.days: " + empl.getVacationDays());

System.out.println("v.form: " + empl.getVacationForm());

System.out.println();

}

}

OUTPUT:

salary: 50000.0 salary: 50000.0
v.days: 15 v.days: 10
v.form: pink v.form: yellow

Copyright 2008 by Pearson Education
6

Polymorphism and arrays
 Arrays of superclass types can store any subtype as elements.

public class EmployeeMain2 {
public static void main(String[] args) {

Employee[] e = { new Lawyer(), new Secretary(),
new Marketer(), new LegalSecretary() };

for (int i = 0; i < e.length; i++) {
System.out.println("salary: " + e[i].getSalary());
System.out.println("v.days: " + e[i].getVacationDays());
System.out.println();

}
}

}

Output:

salary: 50000.0
v.days: 15

salary: 50000.0
v.days: 10

salary: 60000.0
v.days: 10

salary: 55000.0
v.days: 10

Copyright 2008 by Pearson Education
7

A polymorphism problem
 Suppose that the following four classes have been declared:

public class Foo {

public void method1() {

System.out.println("foo 1");

}

public void method2() {

System.out.println("foo 2");

}

public String toString() {

return "foo";

}

}

public class Bar extends Foo {

public void method2() {

System.out.println("bar 2");

}

}

Copyright 2008 by Pearson Education
8

A polymorphism problem
public class Baz extends Foo {

public void method1() {
System.out.println("baz 1");

}

public String toString() {
return "baz";

}
}

public class Mumble extends Baz {
public void method2() {

System.out.println("mumble 2");
}

}

 What would be the output of the following client code?

Foo[] pity = {new Baz(), new Bar(), new Mumble(), new Foo()};

for (int i = 0; i < pity.length; i++) {

System.out.println(pity[i]);

pity[i].method1();

pity[i].method2();

System.out.println();

}

Copyright 2008 by Pearson Education
9

 Add classes from top (superclass) to bottom (subclass).

 Include all inherited methods.

Diagramming the classes

Copyright 2008 by Pearson Education
10

Finding output with tables

method Foo Bar Baz Mumble

method1

method2

toString

method Foo Bar Baz Mumble

method1 foo 1 baz 1

method2 foo 2 bar 2 mumble 2

toString foo baz

method Foo Bar Baz Mumble

method1 foo 1 foo 1 baz 1 baz 1

method2 foo 2 bar 2 foo 2 mumble 2

toString foo foo baz baz

Copyright 2008 by Pearson Education
11

Polymorphism answer
Foo[] pity = {new Baz(), new Bar(), new Mumble(), new Foo()};

for (int i = 0; i < pity.length; i++) {
System.out.println(pity[i]);
pity[i].method1();
pity[i].method2();
System.out.println();

}

 Output:
baz
baz 1
foo 2

foo
foo 1
bar 2

baz
baz 1
mumble 2

foo
foo 1
foo 2

Copyright 2008 by Pearson Education
12

Another problem
 The order of the classes is jumbled up.

 The methods sometimes call other methods (tricky!).

public class Lamb extends Ham {
public void b() {

System.out.print("Lamb b ");
}

}

public class Ham {
public void a() {

System.out.print("Ham a ");
b();

}

public void b() {
System.out.print("Ham b ");

}

public String toString() {
return "Ham";

}
}

Copyright 2008 by Pearson Education
13

Another problem 2
public class Spam extends Yam {

public void b() {
System.out.print("Spam b ");

}
}

public class Yam extends Lamb {
public void a() {

System.out.print("Yam a ");
super.a();

}

public String toString() {
return "Yam";

}
}

 What would be the output of the following client code?

Ham[] food = {new Lamb(), new Ham(), new Spam(), new Yam()};

for (int i = 0; i < food.length; i++) {

System.out.println(food[i]);

food[i].a();

System.out.println(); // to end the line of output

food[i].b();

System.out.println(); // to end the line of output

System.out.println();

}

Copyright 2008 by Pearson Education
14

Class diagram

Copyright 2008 by Pearson Education
15

Polymorphism at work
 Lamb inherits Ham's a. a calls b. But Lamb overrides b...

public class Ham {
public void a() {

System.out.print("Ham a ");
b();

}

public void b() {
System.out.print("Ham b ");

}

public String toString() {
return "Ham";

}
}

public class Lamb extends Ham {
public void b() {

System.out.print("Lamb b ");
}

}

 Lamb's output from a:
Ham a Lamb b

Copyright 2008 by Pearson Education
16

The table

method Ham Lamb Yam Spam

a

b

toString

method Ham Lamb Yam Spam

a Ham a

b()

Yam a

Ham a

b()

b Ham b Lamb b Spam b

toString Ham Yam

method Ham Lamb Yam Spam

a Ham a

b()

Ham a

b()

Yam a

Ham a

b()

Yam a

Ham a

b()

b Ham b Lamb b Lamb b Spam b

toString Ham Ham Yam Yam

Copyright 2008 by Pearson Education
17

The answer
Ham[] food = {new Lamb(), new Ham(), new Spam(), new Yam()};

for (int i = 0; i < food.length; i++) {

System.out.println(food[i]);

food[i].a();

food[i].b();

System.out.println();

}

 Output:
Ham
Ham a Lamb b
Lamb b

Ham
Ham a Ham b
Ham b

Yam
Yam a Ham a Spam b
Spam b

Yam
Yam a Ham a Lamb b
Lamb b

Copyright 2008 by Pearson Education
18

Casting references
 A variable can only call that type's methods, not a subtype's.

Employee ed = new Lawyer();

int hours = ed.getHours(); // ok; this is in Employee

ed.sue(); // compiler error

 The compiler's reasoning is, variable ed could store any kind of

employee, and not all kinds know how to sue .

 To use Lawyer methods on ed, we can type-cast it.

Lawyer theRealEd = (Lawyer) ed;

theRealEd.sue(); // ok

((Lawyer) ed).sue(); // shorter version

Copyright 2008 by Pearson Education
19

More about casting
 The code crashes if you cast an object too far down the tree.

Employee eric = new Secretary();

((Secretary) eric).takeDictation("hi"); // ok

((LegalSecretary) eric).fileLegalBriefs(); // exception

// (Secretary object doesn't know how to file briefs)

 You can cast only up and down the tree, not sideways.

Lawyer linda = new Lawyer();

((Secretary) linda).takeDictation("hi"); // error

 Casting doesn't actually change the object's behavior.

It just gets the code to compile/run.

((Employee) linda).getVacationForm() // pink (Lawyer's)

Copyright 2008 by Pearson Education

Building Java Programs

Chapter 8

Lecture 8-4: Static Methods and Fields

Copyright 2008 by Pearson Education
21

Critter exercise: Hipster

 All hipsters want to get to the bar with the cheapest PBR

 That bar is at a randomly-generated board location

(On the 60-by-50 world)

 They go north then east until they reach the bar

Copyright 2008 by Pearson Education
22

A flawed solution
import java.util.*; // for Random

public class Hipster extends Critter {
private int cheapBarX;
private int cheapBarY;

public Hipster() {
Random r = new Random();
cheapBarX = r.nextInt(60);
cheapBarY = r.nextInt(50);

}

public Direction getMove() {
if (getY() != cheapBarY) {

return Direction.NORTH;
} else if (getX() != cheapBarX) {

return Direction.EAST;
} else {

return Direction.CENTER;
}

}
}

 Problem: Each hipster goes to a different bar.
We want all hipsters to share the same bar location.

Copyright 2008 by Pearson Education
23

Static members

 static: Part of a class, rather than part of an object.

 Object classes can have static methods and fields.

 Not copied into each object; shared by all objects of that class.

class

state:
private static int staticFieldA

private static String staticFieldB

behavior:
public static void someStaticMethodC()

public static void someStaticMethodD()

object #1

state:
int field2
double field2

behavior:
public void method3()
public int method4()
public void method5()

object #2

state:
int field1
double field2

behavior:
public void method3()
public int method4()
public void method5()

object #3

state:
int field1
double field2

behavior:
public void method3()
public int method4()
public void method5()

Copyright 2008 by Pearson Education
24

Static fields
private static type name;

or,

private static type name = value;

 Example:

private static int theAnswer = 42;

 static field: Stored in the class instead of each object.

 A "shared" global field that all objects can access and modify.

 Like a class constant, except that its value can be changed.

Copyright 2008 by Pearson Education
25

Accessing static fields
 From inside the class where the field was declared:

fieldName // get the value

fieldName = value; // set the value

 From another class (if the field is public):

ClassName.fieldName // get the value

ClassName.fieldName = value; // set the value

 generally static fields are not public unless they are final

 Exercise: Modify the BankAccount class shown previously

so that each account is automatically given a unique ID.

 Exercise: Write the working version of Hipster.

Copyright 2008 by Pearson Education
26

BankAccount solution
public class BankAccount {

// static count of how many accounts are created

// (only one count shared for the whole class)

private static int objectCount = 0;

// fields (replicated for each object)

private String name;

private int id;

public BankAccount() {

objectCount++; // advance the id, and

id = objectCount; // give number to account

}

...

public int getID() { // return this account's id

return id;

}

}

Copyright 2008 by Pearson Education
27

Hipster solution
import java.util.*; // for Random

public class Hipster extends Critter {
// static fields (shared by all hipsters)
private static int cheapBarX = -1;
private static int cheapBarY = -1;

// object constructor/methods (replicated into each hipter)
public Hipster() {

if (cheapBarX < 0 || cheapBarY < 0) {
Random r = new Random(); // the 1st hipster created
cheapBarX = r.nextInt(60); // chooses the bar location
cheapBarY = r.nextInt(50); // for all hipsters to go to

}
}

public Direction getMove() {
if (getY() != cheapBarY) {

return Direction.NORTH;
} else if (getX() != cheapBarX) {

return Direction.EAST;
} else {

return Direction.CENTER;
}

}
}

Copyright 2008 by Pearson Education
28

Static methods
// the same syntax you've already used for methods

public static type name(parameters) {
statements;

}

 static method: Stored in a class, not in an object.

 Shared by all objects of the class, not replicated.

 Does not have any implicit parameter, this;

therefore, cannot access any particular object's fields.

 Exercise: Make it so that clients can find out how many
total BankAccount objects have ever been created.

Copyright 2008 by Pearson Education
29

BankAccount solution
public class BankAccount {

// static count of how many accounts are created
// (only one count shared for the whole class)
private static int objectCount = 0;

// clients can call this to find out # accounts created
public static int getNumAccounts() {

return objectCount;
}

// fields (replicated for each object)
private String name;
private int id;

public BankAccount() {
objectCount++; // advance the id, and
id = objectCount; // give number to account

}

...

public int getID() { // return this account's id
return id;

}
}

Copyright 2008 by Pearson Education
30

Summary of Java classes
 A class is used for any of the following in a large program:

 a program : Has a main and perhaps other static methods.

 example: GuessingGame, BabyNames, DNA, CritterMain

 does not usually declare any static fields (except final)

 an object class : Defines a new type of objects.

 example: Point, BankAccount, Date, Critter, Hipster

 declares object fields, constructor(s), and methods

 might declare static fields or methods, but these are less of a focus

 should be encapsulated (all fields and static fields private)

 a module : Utility code implemented as static methods.

 example: Math

