
Copyright 2008 by Pearson Education

CSE 142, Spring 2013

Chapter 8

Lecture 8-3: Encapsulation, this

reading: 8.5 - 8.6

self-checks: #13-17

exercises: #5

Copyright 2008 by Pearson Education
2

Abstraction

Don't need
to know
this

Can focus
on this!!

Copyright 2008 by Pearson Education
4

The toString method

tells Java how to convert an object into a String

Point p1 = new Point(7, 2);

System.out.println("p1: " + p1);

// the above code is really calling the following:

System.out.println("p1: " + p1.toString());

 Every class has a toString, even if it isn't in your code.

 Default: class's name @ object's memory address (base 16)

Point@9e8c34

Copyright 2008 by Pearson Education
5

toString syntax
public String toString() {

code that returns a String representing this object;

}

 Method name, return, and parameters must match exactly.

 Example:

// Returns a String representing this Point.

public String toString() {

return "(" + x + ", " + y + ")";

}

Copyright 2008 by Pearson Education
6

Private fields
 A field can be declared private.

 No code outside the class can access or change it.

private type name;

 Examples:

private int id;

private String name;

 Client code sees an error when accessing private fields:

PointMain.java:11: x has private access in Point

System.out.println("p1 is (" + p1.x + ", " + p1.y + ")");

^

Copyright 2008 by Pearson Education
7

Accessing private state
 We can provide methods to get and/or set a field's value:

// A "read-only" access to the x field ("accessor")

public int getX() {

return x;

}

// Allows clients to change the x field ("mutator")

public void setX(int newX) {

x = newX;

}

 Client code will look more like this:

System.out.println("p1: (" + p1.getX() + ", " + p1.getY() + ")");

p1.setX(14);

Copyright 2008 by Pearson Education
8

Encapsulation
 encapsulation: Hiding implementation details of an

object from its clients.

 Encapsulation provides abstraction.

 separates external view (behavior) from internal view (state)

 Encapsulation protects the integrity of an object's data.

Copyright 2008 by Pearson Education
10

Point class, version 4
// A Point object represents an (x, y) location.
public class Point {

private int x;
private int y;

public Point(int initialX, int initialY) {
x = initialX;
y = initialY;

}

public double distanceFromOrigin() {
return Math.sqrt(x * x + y * y);

}

public int getX() {
return x;

}

public int getY() {
return y;

}

public void setLocation(int newX, int newY) {
x = newX;
y = newY;

}

public void translate(int dx, int dy) {
x = x + dx;
y = y + dy;

}
}

Copyright 2008 by Pearson Education
11

Client code, version 4
public class PointMain4 {

public static void main(String[] args) {

// create two Point objects

Point p1 = new Point(5, 2);

Point p2 = new Point(4, 3);

// print each point

System.out.println("p1: (" + p1.getX() + ", " + p1.getY() + ")");

System.out.println("p2: (" + p2.getX() + ", " + p2.getY() + ")");

// move p2 and then print it again

p2.translate(2, 4);

System.out.println("p2: (" + p2.getX() + ", " + p2.getY() + ")");

}

}

OUTPUT:
p1 is (5, 2)

p2 is (4, 3)

p2 is (6, 7)

Copyright 2008 by Pearson Education
12

CSE 142 Critters
 Ant

 Bird

 Hippo

 Vulture

 Husky (creative)

 behavior:

 eat eating food

 fight animal fighting

 getColor color to display

 getMove movement

 toString letter to display

Copyright 2008 by Pearson Education
13

A Critter subclass
public class name extends Critter { ... }

public abstract class Critter {

public boolean eat()

public Attack fight(String opponent)

// ROAR, POUNCE, SCRATCH

public Color getColor()

public Direction getMove()

// NORTH, SOUTH, EAST, WEST, CENTER

public String toString()

}

Copyright 2008 by Pearson Education
14

How the simulator works
 "Go" → loop:

 move each animal (getMove)

 if they collide, fight

 if they find food, eat

 Simulator is in control!

 getMove is one move at a time

 (no loops)

 Keep state (fields)

 to remember future moves

%

Next
move?

Copyright 2008 by Pearson Education
15

Development Strategy
 Do one species at a time

 in ABC order from easier to harder (Ant → Bird → ...)

 debug printlns

 Simulator helps you debug

 smaller width/height

 fewer animals

 "Tick" instead of "Go"

 "Debug" checkbox

 drag/drop to move animals

Copyright 2008 by Pearson Education
16

Critter exercise: Cougar

 Write a critter class Cougar:

Method Behavior

constructor public Cougar()

eat Always eats.

fight Always pounces.

getColor Blue if the Cougar has never fought; red if he has.

getMove Walks west until he finds food; then walks east
until he finds food; then goes west and repeats.

toString "C"

Copyright 2008 by Pearson Education
17

Ideas for state
 You must not only have the right state, but update that

state properly when relevant actions occur.

 Counting is helpful:

 How many total moves has this animal made?

 How many times has it eaten? Fought?

 Remembering recent actions in fields is helpful:

 Which direction did the animal move last?

 How many times has it moved that way?

 Did the animal eat the last time it was asked?

 How many steps has the animal taken since last eating?

 How many fights has the animal been in since last eating?

Copyright 2008 by Pearson Education
18

Cougar solution
import java.awt.*; // for Color

public class Cougar extends Critter {

private boolean west;

private boolean fought;

public Cougar() {

west = true;

fought = false;

}

public boolean eat() {

west = !west;

return true;

}

public Attack fight(String opponent) {

fought = true;

return Attack.POUNCE;

}

...

Copyright 2008 by Pearson Education
19

Cougar solution
...

public Color getColor() {

if (fought) {

return Color.RED;

} else {

return Color.BLUE;

}

}

public Direction getMove() {

if (west) {

return Direction.WEST;

} else {

return Direction.EAST;

}

}

public String toString() {

return "C";

}

}

