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CSE 142, Spring 2013

Chapter 8

Lecture 8-2: Object Behavior (Methods)
and Constructors

reading: 8.2 - 8.3
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Why objects?
 Primitive types don't model complex concepts well

 Cost is a double.  What's a person?

 Classes are a way to define new types

 Many objects can be made from those types

 Values of the same type often are used in similar ways

 Promote code reuse through instance methods
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Client code redundancy
 Suppose our client program wants to draw Point objects:

// draw each city

Point p1 = new Point();

p1.x = 15;

p1.y = 37;

g.fillOval(p1.x, p1.y, 3, 3);

g.drawString("(" + p1.x + ", " + p1.y + ")", p1.x, p1.y);

 To draw other points, the same code must be repeated.

 We can remove this redundancy using a method.
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Eliminating redundancy, v1
 We can eliminate the redundancy with a static method:

// Draws the given point on the DrawingPanel.

public static void draw(Point p, Graphics g) {

g.fillOval(p.x, p.y, 3, 3);

g.drawString("(" + p.x + ", " + p.y + ")", p.x, p.y);

}

 main would call the method as follows:

draw(p1, g);
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Problems with static solution

 We are missing a major benefit of objects: code reuse.

 Every program that draws Points would need a draw method.

 The syntax doesn't match how we're used to using objects.

draw(p1, g);    // static (bad)

 The point of classes is to combine state and behavior.

 The draw behavior is closely related to a Point's data.

 The method belongs inside each Point object.

p1.draw(g);     // inside the object (better)
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Instance methods
 instance method (or object method): Exists inside each 

object of a class and gives behavior to each object.

public type name(parameters) {

statements;

}

 same syntax as static methods, but without static keyword

Example:

public void shout() {

System.out.println("HELLO THERE!");

}
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The implicit parameter
 implicit parameter:

The object on which an instance method is called.

 During the call p1.draw(g);

the object referred to by p1 is the implicit parameter.

 During the call p2.draw(g);

the object referred to by p2 is the implicit parameter.

 The instance method can refer to that object's fields.

 We say that it executes in the context of a particular object.

 draw can refer to the x and y of the object it was called on.
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Point class, version 2
public class Point {

int x;

int y;

// Changes the location of this Point object.

public void draw(Graphics g) {

g.fillOval(x, y, 3, 3);

g.drawString("(" + x + ", " + y + ")", x, y);

}

}

 Each Point object contains a draw method that draws that 

point at its current x/y position.
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Class method questions
 Write a method translate that changes a Point's location 

by a given dx, dy amount.

 Write a method distanceFromOrigin that returns the 
distance between a Point and the origin, (0, 0).

Use the formula:

 Modify the Point and client code to use these methods.

   212

2

12 yyxx 
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Class method answers
public class Point {

int x;

int y;

public void translate(int dx, int dy) {

x = x + dx;

y = y + dy;

}

public double distanceFromOrigin() {

return Math.sqrt(x * x + y * y);

}

}
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public double distanceFromOrigin() {

// this code can see p2's x and y

return Math.sqrt(x * x + y * y);

}

 Each Point object has its own copy of the distanceFromOrigin

method, which operates on that object's state:

Point p1 = new Point();

p1.x = 7;

p1.y = 2;

Point p2 = new Point();

p2.x = 4;

p2.y = 3;

p1.distanceFromOrigin();

p2.distanceFromOrigin();

public double distanceFromOrigin() {

// this code can see p1's x and y

return Math.sqrt(x * x + y * y);

}

Point objects w/ method

x 7 y 2

x 4 y 3
p2

p1
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Kinds of methods
 accessor: A method that lets clients examine object state.

 Examples: distance, distanceFromOrigin

 often has a non-void return type

 mutator: A method that modifies an object's state.

 Examples: setLocation, translate
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Initializing objects
 Currently it takes 3 lines to create a Point and initialize it:

Point p = new Point();

p.x = 3;

p.y = 8;                     // tedious

 We'd rather specify the fields' initial values at the start:

Point p = new Point(3, 8);   // desired; doesn't work (yet)

 We are able to this with most types of objects in Java.
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Constructors

 constructor: Initializes the state of new objects.

public type(parameters) {
statements;

}

 runs when the client uses the new keyword

 no return type is specified;

it implicitly "returns" the new object being created

 If a class has no constructor, Java gives it a default constructor

with no parameters that sets all fields to 0.
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Constructor example

public class Point {

int x;

int y;

// Constructs a Point at the given x/y location.

public Point(int initialX, int initialY) {

x = initialX;

y = initialY;

}

public void translate(int dx, int dy) {

x = x + dx;

y = y + dy;

}

...

}
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Tracing a constructor call
 What happens when the following call is made?

Point p1 = new Point(7, 2);

public Point(int initialX, int initialY) {

x = initialX;

y = initialY;

}

public void translate(int dx, int dy) {

x += dx;

y += dy;

}

x yp1
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Common constructor bugs
1.  Re-declaring fields as local variables  ("shadowing"):

public Point(int initialX, int initialY) {

int x = initialX;

int y = initialY;

}

 This declares local variables with the same name as the fields, 
rather than storing values into the fields.  The fields remain 0.

2.  Accidentally giving the constructor a return type:

public void Point(int initialX, int initialY) {

x = initialX;

y = initialY;

}

 This is actually not a constructor, but a method named Point
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Client code, version 3
public class PointMain3 {

public static void main(String[] args) {

// create two Point objects

Point p1 = new Point(5, 2);

Point p2 = new Point(4, 3);

// print each point

System.out.println("p1: (" + p1.x + ", " + p1.y + ")");

System.out.println("p2: (" + p2.x + ", " + p2.y + ")"); 

// move p2 and then print it again

p2.translate(2, 4);

System.out.println("p2: (" + p2.x + ", " + p2.y + ")"); 

}

}

OUTPUT:
p1: (5, 2)

p2: (4, 3)

p2: (6, 7)
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Multiple constructors
 A class can have multiple constructors.

 Each one must accept a unique set of parameters.

 Exercise: Write a Point constructor with no parameters 

that initializes the point to (0, 0).

// Constructs a new point at (0, 0).

public Point() {

x = 0;

y = 0;

}
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Printing objects
 By default, Java doesn't know how to print objects:

Point p = new Point();

p.x = 10;

p.y = 7;

System.out.println("p is " + p);  // p is Point@9e8c34

// better, but cumbersome;           p is (10, 7)

System.out.println("p is (" + p.x + ", " + p.y + ")");

// desired behavior

System.out.println("p is " + p);  // p is (10, 7)
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The toString method

tells Java how to convert an object into a String

Point p1 = new Point(7, 2);

System.out.println("p1: " + p1);

// the above code is really calling the following:

System.out.println("p1: " + p1.toString());

 Every class has a toString, even if it isn't in your code.

 Default: class's name @ object's memory address  (base 16)

Point@9e8c34
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toString syntax
public String toString() {

code that returns a String representing this object;

}

 Method name, return, and parameters must match exactly.

 Example:

// Returns a String representing this Point.

public String toString() {

return "(" + x + ", " + y + ")";

}


