
Copyright 2010 by Pearson Education

CSE 142, Spring 2013

Chapter 8

Lecture 8-2: Object Behavior (Methods)
and Constructors

reading: 8.2 - 8.3

Copyright 2010 by Pearson Education
2

Copyright 2010 by Pearson Education
3

Why objects?
 Primitive types don't model complex concepts well

 Cost is a double. What's a person?

 Classes are a way to define new types

 Many objects can be made from those types

 Values of the same type often are used in similar ways

 Promote code reuse through instance methods

Copyright 2010 by Pearson Education
4

Client code redundancy
 Suppose our client program wants to draw Point objects:

// draw each city

Point p1 = new Point();

p1.x = 15;

p1.y = 37;

g.fillOval(p1.x, p1.y, 3, 3);

g.drawString("(" + p1.x + ", " + p1.y + ")", p1.x, p1.y);

 To draw other points, the same code must be repeated.

 We can remove this redundancy using a method.

Copyright 2010 by Pearson Education
5

Eliminating redundancy, v1
 We can eliminate the redundancy with a static method:

// Draws the given point on the DrawingPanel.

public static void draw(Point p, Graphics g) {

g.fillOval(p.x, p.y, 3, 3);

g.drawString("(" + p.x + ", " + p.y + ")", p.x, p.y);

}

 main would call the method as follows:

draw(p1, g);

Copyright 2010 by Pearson Education
6

Problems with static solution

 We are missing a major benefit of objects: code reuse.

 Every program that draws Points would need a draw method.

 The syntax doesn't match how we're used to using objects.

draw(p1, g); // static (bad)

 The point of classes is to combine state and behavior.

 The draw behavior is closely related to a Point's data.

 The method belongs inside each Point object.

p1.draw(g); // inside the object (better)

Copyright 2010 by Pearson Education
7

Instance methods
 instance method (or object method): Exists inside each

object of a class and gives behavior to each object.

public type name(parameters) {

statements;

}

 same syntax as static methods, but without static keyword

Example:

public void shout() {

System.out.println("HELLO THERE!");

}

Copyright 2010 by Pearson Education
10

The implicit parameter
 implicit parameter:

The object on which an instance method is called.

 During the call p1.draw(g);

the object referred to by p1 is the implicit parameter.

 During the call p2.draw(g);

the object referred to by p2 is the implicit parameter.

 The instance method can refer to that object's fields.

 We say that it executes in the context of a particular object.

 draw can refer to the x and y of the object it was called on.

Copyright 2010 by Pearson Education
11

Point class, version 2
public class Point {

int x;

int y;

// Changes the location of this Point object.

public void draw(Graphics g) {

g.fillOval(x, y, 3, 3);

g.drawString("(" + x + ", " + y + ")", x, y);

}

}

 Each Point object contains a draw method that draws that

point at its current x/y position.

Copyright 2010 by Pearson Education
12

Class method questions
 Write a method translate that changes a Point's location

by a given dx, dy amount.

 Write a method distanceFromOrigin that returns the
distance between a Point and the origin, (0, 0).

Use the formula:

 Modify the Point and client code to use these methods.

 212

2

12 yyxx

Copyright 2010 by Pearson Education
13

Class method answers
public class Point {

int x;

int y;

public void translate(int dx, int dy) {

x = x + dx;

y = y + dy;

}

public double distanceFromOrigin() {

return Math.sqrt(x * x + y * y);

}

}

Copyright 2010 by Pearson Education
14

public double distanceFromOrigin() {

// this code can see p2's x and y

return Math.sqrt(x * x + y * y);

}

 Each Point object has its own copy of the distanceFromOrigin

method, which operates on that object's state:

Point p1 = new Point();

p1.x = 7;

p1.y = 2;

Point p2 = new Point();

p2.x = 4;

p2.y = 3;

p1.distanceFromOrigin();

p2.distanceFromOrigin();

public double distanceFromOrigin() {

// this code can see p1's x and y

return Math.sqrt(x * x + y * y);

}

Point objects w/ method

x 7 y 2

x 4 y 3
p2

p1

Copyright 2010 by Pearson Education
15

Kinds of methods
 accessor: A method that lets clients examine object state.

 Examples: distance, distanceFromOrigin

 often has a non-void return type

 mutator: A method that modifies an object's state.

 Examples: setLocation, translate

Copyright 2010 by Pearson Education
17

Initializing objects
 Currently it takes 3 lines to create a Point and initialize it:

Point p = new Point();

p.x = 3;

p.y = 8; // tedious

 We'd rather specify the fields' initial values at the start:

Point p = new Point(3, 8); // desired; doesn't work (yet)

 We are able to this with most types of objects in Java.

Copyright 2010 by Pearson Education
18

Constructors

 constructor: Initializes the state of new objects.

public type(parameters) {
statements;

}

 runs when the client uses the new keyword

 no return type is specified;

it implicitly "returns" the new object being created

 If a class has no constructor, Java gives it a default constructor

with no parameters that sets all fields to 0.

Copyright 2010 by Pearson Education
19

Constructor example

public class Point {

int x;

int y;

// Constructs a Point at the given x/y location.

public Point(int initialX, int initialY) {

x = initialX;

y = initialY;

}

public void translate(int dx, int dy) {

x = x + dx;

y = y + dy;

}

...

}

Copyright 2010 by Pearson Education
20

Tracing a constructor call
 What happens when the following call is made?

Point p1 = new Point(7, 2);

public Point(int initialX, int initialY) {

x = initialX;

y = initialY;

}

public void translate(int dx, int dy) {

x += dx;

y += dy;

}

x yp1

Copyright 2010 by Pearson Education
21

Common constructor bugs
1. Re-declaring fields as local variables ("shadowing"):

public Point(int initialX, int initialY) {

int x = initialX;

int y = initialY;

}

 This declares local variables with the same name as the fields,
rather than storing values into the fields. The fields remain 0.

2. Accidentally giving the constructor a return type:

public void Point(int initialX, int initialY) {

x = initialX;

y = initialY;

}

 This is actually not a constructor, but a method named Point

Copyright 2010 by Pearson Education
22

Client code, version 3
public class PointMain3 {

public static void main(String[] args) {

// create two Point objects

Point p1 = new Point(5, 2);

Point p2 = new Point(4, 3);

// print each point

System.out.println("p1: (" + p1.x + ", " + p1.y + ")");

System.out.println("p2: (" + p2.x + ", " + p2.y + ")");

// move p2 and then print it again

p2.translate(2, 4);

System.out.println("p2: (" + p2.x + ", " + p2.y + ")");

}

}

OUTPUT:
p1: (5, 2)

p2: (4, 3)

p2: (6, 7)

Copyright 2010 by Pearson Education
23

Multiple constructors
 A class can have multiple constructors.

 Each one must accept a unique set of parameters.

 Exercise: Write a Point constructor with no parameters

that initializes the point to (0, 0).

// Constructs a new point at (0, 0).

public Point() {

x = 0;

y = 0;

}

Copyright 2010 by Pearson Education
24

Printing objects
 By default, Java doesn't know how to print objects:

Point p = new Point();

p.x = 10;

p.y = 7;

System.out.println("p is " + p); // p is Point@9e8c34

// better, but cumbersome; p is (10, 7)

System.out.println("p is (" + p.x + ", " + p.y + ")");

// desired behavior

System.out.println("p is " + p); // p is (10, 7)

Copyright 2010 by Pearson Education
25

The toString method

tells Java how to convert an object into a String

Point p1 = new Point(7, 2);

System.out.println("p1: " + p1);

// the above code is really calling the following:

System.out.println("p1: " + p1.toString());

 Every class has a toString, even if it isn't in your code.

 Default: class's name @ object's memory address (base 16)

Point@9e8c34

Copyright 2010 by Pearson Education
26

toString syntax
public String toString() {

code that returns a String representing this object;

}

 Method name, return, and parameters must match exactly.

 Example:

// Returns a String representing this Point.

public String toString() {

return "(" + x + ", " + y + ")";

}

