
1

CSE 142, Spring 2013

Chapter 5
Lecture 5-2: Random Numbers

reading: 5.1, 5.6

2

http://xkcd.com/221/

http://xkcd.com/221/

3

 sentinel: A value that signals the end of user input.

 sentinel loop: Repeats until a sentinel value is seen.

 Example: Write a program that prompts the user for text
until the user types "quit", then output the total number of
characters typed.

 (In this case, "quit" is the sentinel value.)

Type a word (or "quit" to exit): hello
Type a word (or "quit" to exit): yay
Type a word (or "quit" to exit): quit
You typed a total of 8 characters.

Sentinel values

4

Solution?
Scanner console = new Scanner(System.in);

int sum = 0;

String response = "dummy"; // "dummy" value, anything but "quit"

while (!response.equals("quit")) {

System.out.print("Type a word (or \"quit\" to exit): ");

response = console.next();

sum += response.length();

}

System.out.println("You typed a total of " + sum + " characters.");

 This solution produces the wrong output. Why?

You typed a total of 12 characters.

5

The problem with our code
 Our code uses a pattern like this:

sum = 0.

while (input is not the sentinel) {

prompt for input; read input.

add input length to the sum.

}

 On the last pass, the sentinel’s length (4) is added to the
sum:

prompt for input; read input ("quit").

add input length (4) to the sum.

 This is a fencepost problem.

 Must read N lines, but only sum the lengths of the first N-1.

6

A fencepost solution
sum = 0.

prompt for input; read input. // place a "post"

while (input is not the sentinel) {

add input length to the sum. // place a "wire"

prompt for input; read input. // place a "post"

}

 Sentinel loops often utilize a fencepost "loop-and-a-half"
style solution by pulling some code out of the loop.

7

Correct code
Scanner console = new Scanner(System.in);

int sum = 0;

// pull one prompt/read ("post") out of the loop

System.out.print("Type a word (or \"quit\" to exit): ");

String response = console.next();

while (!response.equals("quit")) {

sum += response.length(); // moved to top of loop

System.out.print("Type a word (or \"quit\" to exit): ");

response = console.next();

}

System.out.println("You typed a total of " + sum + " characters.");

8

Sentinel as a constant
public static final String SENTINEL = "quit";

...

Scanner console = new Scanner(System.in);

int sum = 0;

// pull one prompt/read ("post") out of the loop

System.out.print("Type a word (or \"" + SENTINEL + "\" to exit): ");

String response = console.next();

while (!response.equals(SENTINEL)) {

sum += response.length(); // moved to top of loop

System.out.print("Type a word (or \"" + SENTINEL + "\" to exit): ");

response = console.next();

}

System.out.println("You typed a total of " + sum + " characters.");

9

Randomness
 Lack of predictability: don't know what's coming next

 Random process: outcomes do not follow a deterministic
pattern (math, statistics, probability)

 Lack of bias or correlation (statistics)

 Relevant in lots of fields

 Genetic mutations (biology)

 Quantum processes (physics)

 Random walk hypothesis (finance)

 Cryptography (computer science)

 Game theory (mathematics)

 Determinism (religion)

10

Pseudo-Randomness
 Computers generate numbers in a predictable way using a

mathematical formula

 Parameters may include current time, mouse position

 In practice, hard to predict or replicate

 True randomness uses natural processes

 Atmospheric noise (http://www.random.org/)

 Lava lamps (patent #5732138)

 Radioactive decay

http://www.random.org/

11

The Random class

 A Random object generates pseudo-random numbers.

 Class Random is found in the java.util package.

import java.util.*;

 Example:

Random rand = new Random();

int randomNumber = rand.nextInt(10); // 0-9

Method name Description

nextInt() returns a random integer

nextInt(max) returns a random integer in the range [0, max)

in other words, 0 to max-1 inclusive

nextDouble() returns a random real number in the range [0.0, 1.0)

12

Generating random numbers
 Common usage: to get a random number from 1 to N

int n = rand.nextInt(20) + 1; // 1-20 inclusive

 To get a number in arbitrary range [min, max] inclusive:

name.nextInt(size of range) + min

 Where size of range is (max - min + 1)

 Example: A random integer between 4 and 10 inclusive:

int n = rand.nextInt(7) + 4;

13

Random questions

 Given the following declaration, how would you get:

Random rand = new Random();

 A random number between 1 and 47 inclusive?

int random1 = rand.nextInt(47) + 1;

 A random number between 23 and 30 inclusive?

int random2 = rand.nextInt(8) + 23;

 A random even number between 4 and 12 inclusive?

int random3 = rand.nextInt(5) * 2 + 4;

14

Random and other types

 nextDouble method returns a double between 0.0 - 1.0

 Example: Get a random GPA value between 1.5 and 4.0:

double randomGpa = rand.nextDouble() * 2.5 + 1.5;

 Any set of possible values can be mapped to integers

 code to randomly play Rock-Paper-Scissors:

int r = rand.nextInt(3);

if (r == 0) {

System.out.println("Rock");

} else if (r == 1) {

System.out.println("Paper");

} else { // r == 2

System.out.println("Scissors");

}

15

Random question

 Write a program that simulates rolling two 6-sided dice
until their combined result comes up as 7.

2 + 4 = 6

3 + 5 = 8

5 + 6 = 11

1 + 1 = 2

4 + 3 = 7

You won after 5 tries!

16

Random answer
// Rolls two dice until a sum of 7 is reached.

import java.util.*;

public class Dice {

public static void main(String[] args) {

Random rand = new Random();

int tries = 0;

int sum = 0;

while (sum != 7) {

// roll the dice once

int roll1 = rand.nextInt(6) + 1;

int roll2 = rand.nextInt(6) + 1;

sum = roll1 + roll2;

System.out.println(roll1 + " + " + roll2 + " = " + sum);

tries++;

}

System.out.println("You won after " + tries + " tries!");

}

}

17

Random question

 Write a program that plays an adding game.

 Ask user to solve random adding problems with 2-5 numbers.

 The user gets 1 point for a correct answer, 0 for incorrect.

 The program stops after 3 incorrect answers.

4 + 10 + 3 + 10 = 27

9 + 2 = 11

8 + 6 + 7 + 9 = 25

Wrong! The answer was 30

5 + 9 = 13

Wrong! The answer was 14

4 + 9 + 9 = 22

3 + 1 + 7 + 2 = 13

4 + 2 + 10 + 9 + 7 = 42

Wrong! The answer was 32

You earned 4 total points

18

Random answer
// Asks the user to do adding problems and scores them.

import java.util.*;

public class AddingGame {

public static void main(String[] args) {

Scanner console = new Scanner(System.in);

Random rand = new Random();

// play until user gets 3 wrong

int points = 0;

int wrong = 0;

while (wrong < 3) {

int result = play(console, rand); // play one game

if (result == 0) {

wrong++;

} else {

points++;

}

}

System.out.println("You earned " + points + " total points.");

}

19

Random answer 2
...

// Builds one addition problem and presents it to the user.

// Returns 1 point if you get it right, 0 if wrong.

public static int play(Scanner console, Random rand) {

// print the operands being added, and sum them

int operands = rand.nextInt(4) + 2;

int sum = rand.nextInt(10) + 1;

System.out.print(sum);

for (int i = 2; i <= operands; i++) {

int n = rand.nextInt(10) + 1;

sum += n;

System.out.print(" + " + n);

}

System.out.print(" = ");

// read user's guess and report whether it was correct

int guess = console.nextInt();

if (guess == sum) {

return 1;

} else {

System.out.println("Wrong! The answer was " + total);

return 0;

}

}

}

