
Ruby!

• Useful as a scripting language

– script: A small program meant for one time use

– Targeted towards small to medium size projects

• Use by:

– Amazon, Twitter, Yahoo!, White Pages, Reddit

Interpreted

• C/C++

– Compiled to assembly/Run directly on machine

• Java

– Compiled to bytecode/Interpreted by JVM

• Ruby

– Interpreted (no compilation)

irb (Ruby interpreter)

• Allows you to type commands one at a time
and see results

Our First Program

• Ruby does not have a main method like Java

– Just write your code directly in a file

• Ruby statements do not end with semicolons

• Method calls don’t need parenthesis

Expressions

• Arithmetic is similar to Java

– Operators similar to Java

• + - * / % (plus ** for exponentiation)

• Precedence

– () before ** before * / % before + -

• Integers vs Real Numbers

Unlimited Precision

• Java
– There is a maximum value for integers

– There is a maximum value for longs

• Ruby
– There is no maximum!

• Fixnum

• Bignum

– Why the distinction?

Declaring Strings

• “” allows escape sequences

• ‘’ does not allow escapes (excpet for \’)

Variables/Types

• Don’t declare types

• Ruby is looser about Types than Java

– Type of variable can change throughout program

String Multiplication

• Strings can be multiplied by integers

– Concatenates string repeatedly

Strings and Ints

• Integers and Strings cannot be concatenated
in Ruby

– to_s – converts to string

– to_i – converts to integer

Loops

• The for loop

– Java

– Ruby

Loops

• The while loop

– Java

– Ruby

Constants

• Ruby doesn’t really have constants

– Instead declare a variable at the top of your code
and it will be accessible everywhere

– You will get a warning if you change a constant,
but you can change it anyway (bad style)

Parameters

• Parameters are declared by writing their
names (no types)

• May seem odd that we can pass ints, strings,
or arrays

Duck Typing

• Actually, we can pass anything that has a +
method

– This is called Duck Typing

– Why would we limit our method to only operating
on objects of type Duck?

• If it looks like a Duck and quacks like a Duck, then it’s a
Duck

• This allows us to write flexible, reusable code

Inspecting Objects

• How do I know whether an object has a +
method?

– You can ask the object (with the “methods”
method)

– Everything is an object in Ruby (no primatives)

Default Parameter Values

• You can give a default value to parameters

– The caller doesn’t have to pass a value

Math

• The Math module has methods and constants
that you can use

• Has many of the same methods as Java

Returning Values

• Methods in Ruby return the last value
evaluated (only do this if you’re an expert)

• You can also explicitly return values, and this is
less error prone

Reading from the Console

• Java

• Ruby

If Statements

• Java

• Ruby

elsif

• Java

• Ruby

Logical Operators

• == != >= <= < > (just like Java)
• <=> (not in Java)

– Remember, because of Duck Typing these are
applicable to more than just numbers

– What might <=> be useful for?

• && || ! (just like Java)

Arrays

• Arrays

– More flexible than Java, can mix types

– Many useful methods

• map, sort, delete, each, min, max, include?, select,
shuffle, slice

– Negative Indexing

Hashes

• In Java these are Maps

– (you will learn about them in 143)

– Ruby’s are more flexible; you can mix types

• Kind of like Arrays, but instead of indexing by
numbers, you index by whatever you want

Multiple Assignment

• Can assign to and return multiple items at a
time (uses arrays under the covers)

Reading Files

• Java

• Ruby

Writing Files

• Java

• Ruby

