
REFLECTION IN JAVA

By: Zachary Cava

What exactly is a class?

 It’s a collection of different things, such as:

 Fields

 Methods

 Constructors

 We define these different things with names,

types, parameters, values, expressions, etc

while programming, but in reflection all of this

already exists.

Programming vs Reflecting

 We use reflection to manipulate things that

already exist and, normally, are set.

 But unlike programming, we are not tied to

specific names, types or views.

 We have the ability to dynamically change

what things are, regardless of how they were

written!

 More specifically, we are modifying objects at

runtime.

What do you mean Runtime?

 Normally you program something like this:

 Write/Modify the class, methods, etc

 Compile it

 Run it

 If you want to make any changes you have to

recompile and rerun that class.

What do you mean Runtime?

 With reflection, we can manipulate a class

without ever recompiling it:

 Write/Modify the class, methods, etc

 Compile it

 Run it

 Modify the class here!

 It is important to note that another class is the

one doing the modification.

Uses of Reflection

 Some common uses of reflection:

 To load and use classes unknown at compile

time, but have set methods.

 Example: The Critters assignment

 Test programs by forcing specific states

 By debuggers to inspect running programs

 Malicious things

 Hacking

Programming Reflection

 To program with reflection, we must put on our

meta-thinking caps.

 We are going to modify classes from classes

with classes!

 To do this we have a great set of classes in the

following package:

 java.lang.reflect.*;

Java.lang.reflect.*

Some classes we will go over, (there are more):

 Method

 Describes a method for a class and gives access

to it.

 Field

 Describes a field for a class, its type, name, etc.

 Constructor<T>

 Provides information about constructors and the

ability to execute a constructor and get a new

class instance

Java.lang.reflect.*

 AccessibleObject

 Describes the accessibility of an object, i.e. its

view public, private, protected, default.

 Array

 A special class created just for reflecting with

Arrays, since Arrays are such odd objects in Java

we must use this class to manipulate them.

So where do we start?

 To start manipulating a class we must first get a
hold of that class’s “blueprint”.

 Using the java.lang.Class class

 There are two ways to do this, if the class is
already loaded:
 Class<? extends Object> theClass = ClassName.class;

 Or if we need to cause it to load:
 Class theClass = Class.forName(“class.package”);

 We won’t use this second one, its rather complex
at times.

 Example Package: “java.lang.String”

So where do we start?

 So now we have the definition of a class.

 This is like the blueprint to the entire thing, it

lists where everything is and how to get to it.

 It is important to point out that this class has

information that pertains to the structure of the

class, not specific instance information, but

hold that thought for a little later.

 For now lets look at how to get some

information from the class

The Parts of the Class

 Fields

 Methods

 Constructors

 Miscellaneous

Getting those sweet fields

 There are two ways to get class fields:

 getFields();

 Returns an array of Field objects, specifically all the

fields that are public for this class and its super

classes.

 getDeclaredFields();

 Returns an array of Field objects, regardless of view.

 Optionally if you know the field name:

 getField(String name);

 Returns a Field with the given name

The Parts of the Class

 Fields

 Methods

 Constructors

 Miscellaneous

Calling all methods, report for

duty

 Like Fields there are two ways to get Methods

 getMethods();

 Returns all the public methods for this class and any it

inherits from super classes.

 getDeclaredMethods();

 Returns all the methods for this class only regardless

of view.

 Like Fields you can also get a specific method,

but it takes more information.

Calling all methods, report for

duty

 To get a specific method you call
 getMethod(String name, Class<?>… parameterTypes);

 The name parameter is pretty straight forward,
but does Class<?>… mean?

 This means you can pass any number of
Class<?> parameters after the name.

 The Class<?> parameters you pass

reference the types of parameters the method

takes.

Calling all methods, report for

duty

 For example, say we have this method:
 public int doSomething(String stuff, int times, int max){}

 If we were trying to get this specific method we

would have to call getMethod like this:
 getMethod(“doSomething”, String.class, int.class,

int.class);

 We are directly passing the types, and this is

because the reflection will use the method

“fingerprints” to track it down and return it to
us.

The Parts of the Class

 Fields

 Methods

 Constructors

 Miscellaneous

Building blocks

 To get the constructos we have the methods:
 getConstructors()

 Returns all public constructors for the class

 getDeclaredConstructors()

 Returns all constructors for the class, regardless of

view

 We can again get specific constructors with:
 getConstructor(Class<?>… parameterTypes);

 Returns the constructor that takes the given

parameters

The Parts of the Class

 Fields

 Methods

 Constructors

 Miscellaneous

The others

 For this session we will only focus on variables

and methods, but there are a number of other

useful methods:
 getEnclosingMethod()

 Gets the method that declared an anonymous class

 getName()

 Returns the class name

 newInstance()

 Creates a new instance of the class

The Classes of Reflection

 Field

 Method

 Constructor

 ????????????

The Field Class

 Some useful methods:
 get(Object obj)

 Gets the value of this field in the given object

 getPrimitiveType(Object obj)

 set(Object obj, Object value)

 Sets the value of this field in the given object, if possible

 setPrimitiveType(Object obj, PrimitiveType value)

 getType()

 Returns the type of this field

 getName()

 Returns the name of this field

The Field Class

 You may have noticed the two methods

getPrimitiveType(..) and setPrimitiveType(..)

 Here PrimitiveType is replaced with a real

primative type, so if a field represents an int

you would say, getInt() or setInt().

 This is done because primitive types are not

classes and so we need a special way to get

and set them

The Field Class

 The first parameter to all of those methods
was Object obj

 This parameter is a specific instance of the
class.

 a constructed version of the class

 Like I mentioned before the Field object
represents a generic version of a field for a
class, it holds no value, its just a blueprint as
to where it would be in the class.

 To get a value we must provide a class that
has been constructed already.

The Field Class

 Don’t forget we can have two types of fields,

static/non-static

 If we want to get the value of a static field, we

can pass null as the Object obj parameter.

The Classes of Reflection

 Field

 Method

 Constructor

 ????????????

The Method Class

 Some useful methods
 getName()

 Gets the methods name
 getReturnType()

 Gets the type of variable returned by this method
 getParameterTypes()

 Returns an array of parameters in the order the

method takes them
 invoke(Object obj, Object… args)

 Runs this method on the given object, with

parameters.

The Method Class

 The main method of this class that we will use
is invoke(Object obj, Object... params)

 The first parameter is exactly like the Field

class methods, it is an instantiated class with

this method that we can invoke.

 The second parameter means we can pass as

many parameters as necessary to call this

method, usually we will have to use the result

of getParameterTypes() in order to fill those in.

The Classes of Reflection

 Field

 Method

 Constructor

 ????????????

The Constructor Class

 Some useful methods
 getParameterTypes()

 Returns an array of parameter types that this

constructor takes
 newInstance(Object… initargs)

 Creates a new class that this constructor is from using

the given parameters as arguments.

The Constructor Class

 Only two methods? Well yes, we only have an

hour to work with here! And the others are not

as interesting.

 The method we are most concerned with is
newInstance(Object… initArgs)

 This is similar to invoke(..) for methods except

we don’t pass an already instantiate object
because we are making a new one!

 Like methods we will probably call

getParameterTypes() first.

Overview

 Lets take a step back and look at all this
information

 We can get a class blueprint and it’s a class of
type Class from java.lang.Class

 For reflection we use classes like Field,
Method, and Constructor to reference pieces
of the class

 These are generic versions and we must pass
them constructed versions (except for
constructors)

 From each of these reflection classes we have
the ability to manipulate instances of classes.

Lets try it out!

 Whats the fun in learning something without

trying it out?

Lets go!!

Lets try it out

 So it turned out what we learned works pretty

well for everything with a public visibility.

 But what about those private, protected, and

default views?

 Java kept throwing an IllegalAccessException,

we just don’t have permissions to edit those.

 Well not to worry we can get permission!

The Classes of Reflection

 Field

 Method

 Constructor

 ????????????

The Classes of Reflection

 Field

 Method

 Constructor

 AccessibleObject!

The AccessibleObject

 The accessible object is a superclass that

Field, Method, and Constructor extend

 How convenient!

 But what does it do?

 It controls access to variables by checking the

accessibility of a field, method, or constructor

anytime you try to get, set, or invoke one.

The AccessibleObject

 Some very useful methods:
 isAccessible()

 Tells whether or not the object can be accessed based

on its view type

 A public field, method, or constructor will return true

 The other types will return false.
 setAccessible(boolean flag)

 This will override the accessibility setting to whatever

is passed in, true or false

Overriding Accessibility

 So how can we use this?

 Well suppose we have a Field object that

references a field in our class that was

declared like this:
 private String secretMessage;

 Well as we have seen we get an Exception,

but we can avoid it by overriding the

accessibility
 theField.setAccessible(true);

Overriding Accessibility

 Now before you start the triangle pyramid of

evil, note:

 It is possible to prevent use of setAccessible()

 You do this using a SecurityManager to prevent

access to variables

 Stuarts CritterMain does this for tournaments.

Applying Reflection

 Now that we have learned a little bit of

reflection and have some tools under our belt,

lets try it out.

 You can download the ATM.class from the

course website

 To run it you will need to go to the command

line, navigate to where you downloaded the

file and then type

 java ATM

The Secure Financial

Corporation

 An area where security is extremely important

is Banking

 We trust that banks keep all of our

transactions secure and money safe

 Lets suppose we were just hired to check the

security of Secure Financial Corporation’s new

Java powered ATM

 We will need to use reflection to try and

leverage an attack against the machine.

The Secure Financial

Corporation

 The company has decided it would be more

secure for the card to verify that an ATM is

valid by having cards that can execute

methods.

 In particular every card must have a swipe

method that takes in an ATM object that the

card can use to validate is a real ATM.

 The ATM has a method applyDecryption() that

the card must call to determine if the ATM has

the proper credentials (Security Session Tie-

in!)

The Secure Financial

Corporation

 The card must pass an encrypted code to
applyDecryption() which will return a decrypted
code. The card can then use this code to make
sure the ATM has the appropriate private keys.
If it does then the swipe method returns a Data
object for ATM with info.

 That would be all well and good for a secure
system right?

 That way cards don’t give out information to
bad systems!

The Secure Financial

Corporation

 Well its nice in theory, but it gives us a built

ATM object!

 And as we have just learned with Reflection,

we can get all the framework we want, but we

need an instantiated version of the class to do

real damage.

 Lets see what we can do!

Arrays

 If you wish to manipulate arrays with

Reflection you must use the

java.lang.reflect.Array class, you cannot use

the Field class

 This is because Java does not handle Arrays

in the same way it handles Objects or

Primatives

Arrays

 Useful Methods
 get(Object array, int index)

 Gets the value from the array at the given index

 getPrimitiveType(Object array, int index)

 set(Object array, int index, Object value)

 Sets the value in the array at the index to the given

value

 setPrimitiveType(Object array, int index,

PrimitiveType value)

Arrays

 Just like the Field class, the PrimitiveType is

replaced by an actual primitive type and you

must use this type of placement when

accessing a primitive array

 But there are a couple more methods that are

unique to this class

Arrays

 Unique Methods
 getLength(Object array)

 Returns the length of the given array

 newInstance(Class<?> componentType, int…

dimensions)

 Creates a new array of the given type and with the

given dimensions

 newInstance(Class<?> componentType, int length)

 Creates a new array of the given type and with the

given length

Critters

 So the last example we will look at is using

Reflection to “win” Critters.

That’s all folks!

 While there are many more things that make

up Reflection and even more things you can

do with Reflection, that is the extent of this

lecture.

 I will post a secondary ATM that does not pass

an ATM object to the swipe method, can you

find the secret message and decode it?

 Hint: You can get a copy of the instantiated

frames by calling JFrame.getInstances(), ATM

instantiates a Frame.

