Building Java Programs

Chapter 6
Lecture 6-2: Line-Based File Input

reading: 6.3 - 6.5




Aal . “H\Q scence

Loir 8 4ow.o/‘rau. let s

%J W\Ak( VP Som-C J.J‘q :
3

Toothpaste For Dinner.com

ol



 —
Recal

|: Gas prices question

 Write a program that reads a file gasprices.txt
 Format: Belgium $/gal US $/gal date

Sl
8.08
8.38
B2

oL
.34
o
03

S w0 W W

321l
328
4/4/11
Al Al

* The program should print the average gas price over all
data in the file for both countries:

Belgium:

USA:

3.44 $/gal
T3S raal



Hours question

e Given a file hours. txt with the following contents:

—

g v B = R e S e e e o,
T e I O e i
PRGN e E o a8 i Sl S ey

o Consider the task of computing hours worked by each person:

Ben (FR#123) worked 3134 hours @7 .85 hours/iday)
Greg (ID#456) worked 36.8 hours (7.36 hours/day)
Victoria (ID#789) worked 39.5 hours (7.90 hours/day)

BEHIND EVERY
Go00D TEACHii i
IS A GREAT

TEACHER'S ASSISTANT




e

 —
Hours answer (flawed)

// This solution does not work!
D O I A AR e A s // for File
TmMpo b ifavanapivars // for Scanner

A o e e R B e NN e P R
S M A e e L S A I I e A B MO G Y VR AR s )
throws FileNotFoundException {
A Ay e N S N A ey e A B B N e e i
while (input.hasNext ()) {
// process one person
A I e A GV Y G B A SE
String name = input.next ()
double totalHours = 0.0;
AR UM G NS MY AS I R
while (input.hasNextDouble()) {
totalHours += input.nextDouble () ;
days++;
}
Sy stemvounbiprintlntname i CT I e d s
") worked " + totalHours + " hours (" +
(totalHours / days) + " hours/day)");



Flawed output

Ben (ID#123) worked 487.4 hours (97.48 hours/day)
EXcepiron in thread M marny
Java.util.InputMismatchException

abvyavasabiliseannerithirowloriiScanner javia ws40)
at java.util.Scanner.next (Scanner.java:1461)

at java.util.Scanner.nextInt (Scanner.java:2091)
at HoursWorked.main (HoursBad.java:9)

 The inner while loop is grabbing the next person's ID.

« We want to process the tokens, but we also care about the line
breaks (they mark the end of a person's data).

* A better solution is a hybrid approach:
» First, break the overall input into lines.
» Then break each line into tokens.



——

-

Line-based Scanner methods

Method Description

ek et returns next entire line of input (from cursor to \n)

hasNextLine () | returns true if there are any more lines of input
to read (always true for console input)

Scanner input = new Scanner (new File ("<filename>"));
while (input.hasNextLine()) ({

String line = input.nextLine();

<process this line>;



/ = ] =
Consuming lines of input
23 s dsdohny S b h “Hello™wor ld

RS 149

e The Scanner reads the lines as follows:
Pl Pshn v S v e oW ivre nil e en Ve S e e g vy

A

e String line = input.nextlLine()
23\t3.14 John Smith\t"Hello" world\n\t\t45.2 19\n

A

o Shrangilinne 2 S nnputE inex T e
23NEs 4 Tokhin Sl EhN e e L o wor LdinNENELS 2 19 1

A

e Each \n character is consumed but not returned.



e

// 7 .
Scanners on Strings

* A Scanner can tokenize the contents of a String:

Scanner <name> = new Scanner (<String>) ;

 Example:
T M N A B e T o
Scanner scan = new Scanner (text);
ITRnb M s S eananexe I nt by
System.out.println (num) ; // 15
double num?2 = scan.nextDouble () ;
System.out.println (num2) ; A0 302
String word = scan.next();

System.out.println (word) ; // "hello"



—

Mixing lines and tokens

Input file input. txt:

Output to console:

The quick brown fox jumps over

the lazy dog.

LLine has 6 words
A MR ~ AU R = A ML R VT (@

// Counts the words on each line of a file

Scanner input = new Scanner (new File ("input.txt"));
while (input.hasNextLine()) {
String line = input.nextlLine();

Scanner lineScan = new Scanner (line) ;

// process the contents of this line

P VA QIR v lig

while (lineScan.hasNext()) {
String word = lineScan.next() ;

GASY AN AN R At

}

System.out.println ("Line has

O A A M SRR et o o

10



Hours question

* Fix the Hours program to read the input file properly:

—

T2 3 Benaiv B iy
O o e i
N e e e e S

» Recall, it should produce the following output:

Berm WWERH IR o r ked Sl whonrswtiweh v houraid oy
Greg (ID#456) worked 36.8 hours (7.36 hours/day)
Viieworia i EEDRnoN e ke dws Gibien e e eI I s ey

i



e

 —
Hours answer, corrected

// Processes an employee input file and outputs each employee's hours.
import java.io.*; // for File
import java.util.*; // for Scanner

2508 9 W A e AV Y SH M S S p et sy
public static void main(String[] args) throws FileNotFoundException {

Scanner input = new Scanner (new File ("hours.txt")):
AN A R (A K O A SN SN o S R A = AV B
String line = input.nextLine();

processEmployee (line) ;

}

public static void processEmployee (String line) {

Scanner lineScan = new Scanner (line);
¥4 Y WARN o S A U g Y= Y - o A A = ! i T W O 0 // e.g. 456
String name = lineScan.next(); // e.g. "Greg"
double sum = 0.0;
A ALl OBH K A A O
while (lineScan.hasNextDouble()) {

sum = sum + lineScan.nextDouble () ;

count++;

}

double average = sum / count;
System.out.println (name + " (ID#" + id + ") worked " +
sum + " hours (" + average + " hours/day)");

531!



File output

reading: 6.4 - 6.5

A



e —

g

Output to files

* PrintStream: An object in the java.io package that lets
you print output to a destination such as a file.

 Any methods you have used on System.out
(such as print, println) will work on @ PrintStream.

e Syntax:

PrintStream <name> = new PrintStream(new File ("<filename>")) ;

Example:

PrintStream output = new PrintStream(new File("out.txt"));
ot piatepran bl e horavPinelity s

Sy BNV B R S A e A MY NI B A e e e e MmOt s AL R S D R e

14



- aanmll

—

e

Details about PrintStream

PrintStream <name> = new PrintStream(new File ("<filename>")) ;

» If the given file does not exist, it is created.
» If the given file already exists, it is overwritten.

» The output you print appears in a file, not on the console.
You will have to open the file with an editor to see it.

» Do not open the same file for both reading (Scanner)
and writing (PrintStream) at the same time.

« You will overwrite your input file with an empty file (O bytes).

55



g

System.out ahd PrintStream

* The console output object, System.out, iS @ PrintStream.

PrintStream outl = System.out;

PrintStream out2 = new PrintStream(new File ("data.txt")):;
outl.println("Hello, console!"); // goes to console
ot Zvprine En it He Bl ey el // goes to file

» A reference to it can be stored in a PrintStream variable.
« Printing to that variable causes console output to appear.

* You can pass System.out to a method as a PrintStream.
« Allows a method to send output to the console or a file.

16



e

e —

PrintStream question

—

* Modify our previous Hours program to use a PrintStream
to send its output to the file hours out.txt.

» The program will produce no console output.
» But the file hours out.txt will be created with the text:

Ben (ID#123) worked 31.4 hours (7.85 hours/day)
Greg (ID#456) worked 36.8 hours (7.36 hours/day)
Victoria (ID#789) worked 39.5 hours (7.9 hours/day)

%



e

PrintStream answer

// Processes an employee input file and outputs each employee's hours.
import java.io.*; // for File
import java.util.*; // for Scanner

2508 9 W A s VY SRS Ry Bl s A |
public static void main(String[] args) throws FileNotFoundException {

Scanner input = new Scanner (new File ("hours.txt")):
PrintStream out = new PrintStream(new File("hours out.txt")):;
while (input.hasNextLine()) {

String line = input.nextLine();

VORI T S A N T S N AN S A e S o R Y0

}

public static void processEmployee (PrintStream out, String line) {
Scanner lineScan = new Scanner (line);
VA 1 AR Y s AR~ AAAA R s Y = Aot 0 B A = - i B iy ) A o // e.g. 456
String name = lineScan.next(); // e.g. "Greg"
double sum = 0.0;
QY SN s DY IR O -
while (lineScan.hasNextDouble ()) {
sum = sum + lineScan.nextDouble () ;
count++;

}

double average = sum / count;
out.println(name + " (ID#" + id + ") worked " +
sum + " hours (" + average + " hours/day)");



—

Prompting for a file name

e We can ask the user to tell us the file to read.

The filename might have spaces; use nextLine (), nNot next ()

// prompt for input file name
Scanner console = new Scanner (System.in);

System.out.print("Type a file name to use: ");
String filename = console.nextLine() ;

Scanner 1nput = new Scanner (new File (filename)) ;

FileS have an exists method to test for file-not-found:

File file = new File("hours.txt"):;

if ('file.exists()) {
// try a second input file as a backup

System.out.print ("hours file not found!");
file = new File("hoursZ.txt");

53



