
1 of 8

CSE 142, Summer 2010
Midterm Exam, Friday, July 30, 2010

Name: __

Section: ___________________ TA: ___________________

Student ID #: ___________________

• You have 60 minutes to complete this exam.

You may receive a deduction if you keep working after the instructor calls for papers.
• This exam is open-book/notes. You may not use any calculators or other computing devices.
• Code will be graded on proper behavior/output and not on style, unless otherwise indicated.
• Do not abbreviate code, such as "ditto" marks or dot-dot-dot ... marks.

The only abbreviations that are allowed for this exam are:
 S.o.p for System.out.print,
 S.o.pln for System.out.println, and
 S.o.pf for System.out.printf.

• You do not need to write import statements in your code.
• If you enter the room, you must turn in an exam before leaving the room.
• You must show your Student ID to a TA or instructor for your exam to be accepted.

Good luck!

Score summary: (for grader only)

Problem Description Earned Max
1 Expressions 10
2 Parameter Mystery 15
3 If/Else Simulation 10
4 While Loop Simulation 10
5 Assertions 15
6 Programming 15
7 Programming 15
8 Programming 10

TOTAL Total Points 100

2 of 8

1. Expressions
For each expression at left, indicate its value in the right column. List a value of appropriate type and capitalization.
e.g., 7 for an int, 7.0 for a double, "hello" for a String, true or false for a boolean.

Expression Value

11 - 7 * 2 + 3 * 4

10 / (5 / 2) + 1.5 * 6 / 2

115 / 10 + 115 % 10 + 11 / 7 * 3.5

"0" + 10 * 5 + "0" + 5 + 6

(4 <= 9 / 2) && !(2 != 10)

2. Parameter Mystery

At the bottom of the page, write the output produced by the following program, as it would appear on the console.

public class ParameterMystery {
 public static void main(String[] args) {
 String scarlett = "mustard";
 String suspect = "peacock";
 String lounge = "ballroom";
 String pipe = "study";
 String dagger = "pipe";
 String weapon = "dagger";

 clue(weapon, suspect, pipe);
 clue(scarlett, pipe, suspect);
 clue(dagger, "lounge", scarlett);
 clue(lounge, dagger, "dagger");
 clue(pipe, "miss " + scarlett, lounge);
 }

 public static void clue(String suspect, String room, String weapon) {
 System.out.println(room + " in the " + weapon + " with the " + suspect);
 }
}

3 of 8

3. If/Else Simulation
For each call below to the following method, write the output that is produced, as it would appear on the console:

public static void ifElseMystery(int a, int b) {
 if (a % 10 == 0) {
 b *= 10;
 a += 10;
 }
 if (a > b) {
 b = a;
 } else if (a == b) {
 b++;
 }
 System.out.println(a + " " + b);
}

Method Call Output

ifElseMystery(20, 8);

ifElseMystery(30, 30);

ifElseMystery(4, 3);

ifElseMystery(30, 4);

ifElseMystery(7, 7);

__

__

__

__

__

4 of 8

4. While Loop Simulation
For each call below to the following method, write the output that is produced, as it would appear on the console:

public static void whileMystery(int i, int j) {
 int k = 0;
 while (i < j && k < j) {
 i = i + k;
 j--;
 k++;
 System.out.print(i + ", ");
 }

 System.out.println(k);
}

Method Call Output

whileMystery(3, 5);

whileMystery(5, 3);

whileMystery(-3, 6);

whileMystery(2, 12);

whileMystery(-9, 10);

__

__

__

__

__

5 of 8

5. Assertions
For each of the five points labeled by comments, identify each of the assertions in the table below as either being
always true, never true, or sometimes true / sometimes false. (You may abbreviate them as A, N, or S.)

// Reads many integers from Scanner; returns the second smallest
// integer read.
public static int secondSmallest(Scanner console) {
 int num = console.nextInt();
 int first = num;
 int second = num;

 // Point A

 while (num >= 0) {

 // Point B

 if (num < first) {
 second = first;
 first = num;

 // Point C

 } else if (num < second) {
 second = num;
 }

 // Point D

 num = console.nextInt();
 }

 // Point E

 return second;
}

 num < 0 first < second num >= second

Point A

Point B

Point C

Point D

Point E

6 of 8

6. Programming
Write a static method speedingTicket that decides whether a given driver should be given a speeding ticket from a
police officer. The method accepts three parameters: the driver's car speed in miles per hour, as an integer; the current
speed limit, as an integer; and whether or not the police officer has eaten a donut today, as a true/false value.
(A police officer that has eaten a donut is happy, so he/she is less likely to give the driver a ticket.)

Your method should return true if the driver should receive a speeding ticket, and false if not.
A driver should be given a speeding ticket if any of the following conditions are met:

• The officer has eaten a donut (true) and the driver's speed is at least 10 mph over the speeding limit.
• The officer has not eaten a donut (false) and the driver's speed is at least 5 mph over or under the limit.
• The driver is going 100 mph or faster, regardless of the speed limit or donut status.

You may assume that the integers passed as parameters will be non-negative.
Here are some example calls to the method and their resulting return values:

Call Value Returned
speedingTicket(58, 55, false) false
speedingTicket(51, 55, false) false
speedingTicket(42, 35, false) true
speedingTicket(30, 35, false) true
speedingTicket(45, 30, true) true
speedingTicket(49, 40, true) false
speedingTicket(22, 30, true) false
speedingTicket(102, 15, false) true
speedingTicket(101, 98, true) true

7 of 8

7. Programming
It is said that all dogs hear when people talk to them are their names (see cartoon
by Gary Larson to the right). Write a static method named dogHears that prints
lines of what a dog hears. The method accepts two parameters: a dog's name, as a
string, and the number of lines, as an integer. Each line contains a randomly
chosen number of words, between 2 - 10 words inclusive.

Each word on a given line is chosen randomly to be one of two choices: the dog's
name, with 25% probability (1/4 likelihood); or the word "blah", with 75%
probability (3/4 likelihood). This does not mean that the dogs name will print
exactly every fourth time; just that a given word has a 1/4 random chance of being
the dog's name. Multiple calls to dogHears with the same parameters will likely
result in different output for each call.

If 0 or less is passed for the number of lines, no output should be produced.

The following table lists some calls to dogHears:

Call dogHears("Ginger", 7); dogHears("Kona", 4);

Example
Output

Ginger blah blah blah blah blah blah
blah blah blah blah blah blah
blah blah Ginger blah blah
Ginger blah blah Ginger blah blah blah blah blah
blah Ginger blah blah blah blah Ginger blah
blah Ginger
blah blah blah blah blah blah Ginger blah blah Ginger

blah blah blah
Kona Kona blah blah blah Kona
blah blah Kona blah
blah Kona blah

8 of 8

8. Programming
Write a method highLow that takes a number, an integer, as a parameter and returns whether or not the number has
alternating "high" and "low" digits. 0 through 4 are "low" digits and 5 through 9 are "high" digits. Your method
should return true if the number passed alternates between "high" and "low" digits, and false if not. You may
assume the number passed is positive. If the number passed consists of a single digit, highLow should return true.

Note: highLow returns true if the number alternates starting with a "high" digit or starting with a "low" digit. What
is important is that the digits alternate. For example, both 9292 and 2929 passed to highLow should return true.

Here are some example calls to the method and their resulting return values:

Call Value Returned
highLow(1918193) true
highLow(7283) true
highLow(3827) true
highLow(9388) false
highLow(895151) false
highLow(707) true
highLow(44) false
highLow(45) true
highLow(5) true

