
1 of 6

CSE 142, Summer 2010
Final Exam Part A

Thursday, August 19, 2010

Name: ___

Section: ___________________ TA: ___________________

Student ID #: ___________________

Rules:
• You have 60 minutes to complete Part A of this exam (problems 1 – 5). You will complete Part B of

this exam (problems 6 – 8) tomorrow in lecture.
• You may receive a deduction if you keep working after the instructor calls for papers.
• This test is open-book/notes.
• You may not use any computing devices of any kind including calculators.
• Unless otherwise indicated, your code will be graded on proper behavior/output, not on style.
• You do not need to write any import statements in your code.
• Please do not abbreviate code, such as writing ditto marks ("") or dot-dot-dot marks (...). The only

abbreviations allowed are S.o.p, S.o.pln, and S.o.pf for System.out.print, println, and printf.
• If you enter the room, you must turn in an exam and will not be permitted to leave without doing so.
• You must show your Student ID to a TA or instructor for your submitted exam to be accepted.

Good luck!

Problem Description Earned Max
1 Array Mystery 10
2 Reference Mystery 10
3 Inheritance Mystery 10
4 File Processing 15
5 Array Programming 15
6 File Processing 15
7 Array Programming 15
8 Classes and Objects 10
X Extra Credit +1

TOTAL Total Points 100

2 of 6

1. Array Mystery
Consider the following method:
public static void arrayMystery(int[] a) {
 for (int i = 1; i < a.length; i++) {
 a[i] = a[a.length - 1 - i] - a[i - 1];
 }
}

Indicate in the right-hand column what values would be stored in the array after the method arrayMystery executes
if the array in the left-hand column is passed as its parameter.

Original Contents of Array Final Contents of Array

int[] a1 = {42, 42};
arrayMystery(a1);

int[] a2 = {6, 2, 4};
arrayMystery(a2);

int[] a3 = {7, 7, 3, 8, 2};
arrayMystery(a3);

int[] a4 = {4, 2, 3, 1, 2, 5};
arrayMystery(a4);

int[] a5 = {6, 0, -1, 3, -2, 0, 4};
arrayMystery(a5);

3 of 6

2. Reference Semantics Mystery
The following program produces 4 lines of output. Write the output below, as it would appear on the console.
import java.util.*; // for Arrays class

public class Island {
 int lat;
 int lng;

 public Island(int initialLat, int initialLng) {
 lat = initialLat;
 lng = initialLng;
 }
}

public class ReferenceMystery {
 public static void main(String[] args) {
 int n = 4;
 int[] a = {8, 15};
 Island isle = new Island(16, 23);

 mystery(n, a, isle);
 System.out.println(n + " " + Arrays.toString(a) + " " + isle.lat + " " + isle.lng);

 n++;
 a[0] += 2;
 isle.lat = 42;
 mystery(n, a, isle);
 System.out.println(n + " " + Arrays.toString(a) + " " + isle.lat + " " + isle.lng);
 }

 public static void mystery(int n, int[] a, Island isle) {
 n = n - 2;
 a[1]++;
 isle.lng += 100;
 System.out.println(n + " " + Arrays.toString(a) + " " + isle.lat + " " + isle.lng);
 }
}

4 of 6

3. Inheritance Mystery
Assume that the following four classes have been defined:

public class Sawyer extends Jack {
 public void follow() {
 System.out.print("sawyer-F ");
 super.follow();
 }
}

public class Kate {
 public void lead() {
 System.out.print("kate-L ");
 }

 public void follow() {
 System.out.print("kate-F ");
 }

 public String toString() {
 return "kate";
 }
}

public class Jack extends Locke {
 public void lead() {
 super.lead();
 System.out.print("jack-L ");
 }

 public String toString() {
 return "jack";
 }
}

public class Locke extends Kate {
 public void follow() {
 lead();
 System.out.print("locke-F ");
 }
}

Given the classes above, what output is produced by the following code?
Kate[] characters = {new Locke(), new Jack(), new Sawyer(), new Kate()};
for (int i = 0; i < characters.length; i++) {
 System.out.println(characters[i]);
 characters[i].lead();
 System.out.println();
 characters[i].follow();
 System.out.println();
 System.out.println();
}

5 of 6

4. File Processing
Write a static method named triathlon that accepts as its parameter a Scanner for an input file whose data
represents triathlon race results for athletes. Your method should add up the swimming, biking, and running times for
each athlete and report the total time for each athlete and their time difference from the winner's. The input consists
of a series of tokens. Each athlete's data is represented by four tokens in the following order: athlete's first name,
swimming time, biking time, and running time (all times are given in minutes). The data for an athlete may or may
not span multiple lines, but you are guaranteed the athletes will come in the order they finished the race (the winner's
data is first, the second place triathlete's data comes next, etc.).

Here is an example input file. Notice the spacing and that the order the athletes appear in the file are in the same order
that they finished the race:

Meghan 12 40 23 Bryan 16
42 20 Lori 14 41 29 Jessica 18

 37 30 Toni 19 43
29 Tamara 17 42 34

For this input, you method should produce the output below. For example, Meghan swam for 12 minutes, biked for
40 minutes, and ran for 23 minutes so it took for Meghan 75 minutes to finish the race. Notice that for the athletes
that did not win the race, in addition to reporting their total race time, the difference in their time from the winner's is
also reported. For example, Bryan swam for 16 minutes, biked for 42 minutes, and ran for 20 minutes so it took
Bryan 78 minutes to finish the race, which is 3 minutes longer than Meghan's winning time of 75 minutes.

Meghan: 75 min
Bryan: 78 min (+3 min)
Lori: 84 min (+9 min)
Jessica: 85 min (+10 min)
Toni: 91 min (+16 min)
Tamara: 93 min (+18 min)

You may assume that the file contains data for at least one athlete. You may also assume that the input is valid; that
the input has four tokens per athlete, the first token for an athlete is a String and the following three are integers.

6 of 6

5. Array Programming
Write a static method named sandwich that accepts a string bread, an array of strings fillings, and an integer
fillFactor. Your method should return a new array sandwich which has bread as its first and last element and has
fillFactor repetitions of the fillings array occupying the rest of its elements. For example, if fillings stores
{"chicken", "lettuce"} and you call sandwich with sandwich("wheat", fillings, 2), your method
should return {"wheat", "chicken", "lettuce", "chicken", "lettuce", "wheat"} because you add
the elements of fillings as the inner elements of the sandwich array twice.

The table below shows some additional calls to your method and the expected values returned:

Arrays Call and Value Returned
String[] fillings1 = {"tuna", "mayo",
 "salt", "carrot"};

sandwich("bun", fillings1, 1) returns
{"bun", "tuna", "mayo", "salt", "carrot", "bun"}

String[] fillings2 = {"beef"}; sandwich("pita", fillings2, 4) returns
{"pita", "beef", "beef", "beef", "beef", "pita"}

String[] fillings3 = {"ham", "cheese"}; sandwich("rye", fillings3, 3) returns
{"rye", "ham", "cheese", "ham", "cheese", "ham",
"cheese", "rye"}

String[] fillings4 = {"banana",
 "nutella"};

sandwich("white", fillings4, 0) returns
{"white", "white"}

String[] fillings5 = {}; sandwich("", fillings5, 5) returns
{"", ""}

For full credit, do not modify the elements of fillings. You may assume that fillings is not null and fillFactor is non-
negative.

Hint: Nested loops can be used to solve this, but they are not necessary.

