
1 

Copyright 2010 by Pearson Education 

Building Java Programs 

Chapter 6 
Lecture 6-1: File Input with Scanner 

reading: 6.1 – 6.2, 5.4 

Copyright 2010 by Pearson Education 
2 

Input/output (I/O) 
 import java.io.*; 

  Create a File object to get info about a file on your drive. 
  (This doesn't actually create a new file on the hard disk.) 

 File f = new File("example.txt"); 
 if (f.exists() && f.length() > 1000) { 
     f.delete(); 
 } 

Method name Description 

canRead() returns whether file is able to be read 

delete() removes file from disk 

exists() whether this file exists on disk 

getName() returns file's name 

length() returns number of bytes in file 

renameTo(file) changes name of file 

Copyright 2010 by Pearson Education 
3 

Reading files 
  To read a file, pass a File when constructing a Scanner.  

 Scanner name = new Scanner(new File("file name")); 

  Example: 
 File file = new File("mydata.txt"); 
 Scanner input = new Scanner(file); 

  or (shorter): 
 Scanner input = new Scanner(new File("mydata.txt")); 

Copyright 2010 by Pearson Education 
4 

Compiler error w/ files 
import java.io.*;     // for File 
import java.util.*;   // for Scanner 

public class ReadFile { 
    public static void main(String[] args) { 
        Scanner input = new Scanner(new File("data.txt")); 
        String text = input.next(); 
        System.out.println(text); 
    } 
} 

  The program fails to compile with the following error: 
ReadFile.java:6: unreported exception java.io.FileNotFoundException; 
must be caught or declared to be thrown 
        Scanner input = new Scanner(new File("data.txt")); 
                        ^ 

Copyright 2010 by Pearson Education 
5 

Exceptions 
  exception: An object representing a runtime error. 

  dividing an integer by 0 

  calling substring on a String and passing too large an index 

  trying to read the wrong type of value from a Scanner 

  trying to read a file that does not exist 

  We say that a program with an error "throws" an exception. 

  It is also possible to "catch" (handle or fix) an exception. 

  checked exception: An error that must be handled by our 
program (otherwise it will not compile). 

  We must specify how our program will handle file I/O failures. 

Copyright 2010 by Pearson Education 
6 

The throws clause 
  throws clause: Keywords on a method's header that state 

that it may generate an exception (and will not handle it). 

  Syntax: 

 public static type name(params) throws type { 

  Example: 
 public class ReadFile { 

     public static void main(String[] args) 

             throws FileNotFoundException { 

  Like saying, "I hereby announce that this method might throw 
an exception, and I accept the consequences if this happens." 



2 

Copyright 2010 by Pearson Education 
7 

File paths 
  absolute path: specifies a drive or a top "/" folder 

 C:/Documents/smith/hw6/input/data.csv 

  Windows can also use backslashes to separate folders. 

  relative path: does not specify any top-level folder 
 names.dat 
 input/kinglear.txt 

  Assumed to be relative to the current directory: 

 Scanner input = new Scanner(new File("data/readme.txt")); 

 If our program is in  H:/hw6 , 
Scanner will look for  H:/hw6/data/readme.txt 

Copyright 2010 by Pearson Education 
8 

Input tokens 
  token: A unit of user input, separated by whitespace.  

  A Scanner splits a file's contents into tokens. 

  If an input file contains the following: 

 23   3.14 
   "John Smith" 

The Scanner can interpret the tokens as the following types: 

 Token  Type(s) 
 23  int, double, String 
 3.14  double, String 
 "John  String 
 Smith"  String 

Copyright 2010 by Pearson Education 
9 

Files and input cursor 
  Consider a file weather.txt that contains this text: 

16.2   23.5 
   19.1 7.4  22.8 

18.5  -1.8 14.9 

  A Scanner views all input as a stream of characters: 
16.2   23.5\n   19.1 7.4  22.8\n\n18.5  -1.8 14.9\n 
^ 

  input cursor: The current position of the Scanner. 

Copyright 2010 by Pearson Education 
10 

Consuming tokens 
  consuming input: Reading input and advancing the cursor. 

  Calling nextInt etc. moves the cursor past the current token. 

 16.2   23.5\n   19.1 7.4  22.8\n\n18.5  -1.8 14.9\n 
 ^ 

 double d = input.nextDouble();    // 16.2 
 16.2   23.5\n   19.1 7.4  22.8\n\n18.5  -1.8 14.9\n 
     ^ 

 String s = input.next();          // "23.5" 
 16.2   23.5\n   19.1 7.4  22.8\n\n18.5  -1.8 14.9\n 
            ^ 

Copyright 2010 by Pearson Education 
11 

File input question 
  Recall the input file weather.txt: 

16.2   23.5 
   19.1 7.4  22.8 

18.5  -1.8 14.9 

  Write a program that prints the change in temperature 
between each pair of neighboring days. 

16.2 to 23.5, change = 7.3 
23.5 to 19.1, change = -4.4 
19.1 to 7.4, change = -11.7 
7.4 to 22.8, change = 15.4 
22.8 to 18.5, change = -4.3 
18.5 to -1.8, change = -20.3 
-1.8 to 14.9, change = 16.7 

Copyright 2010 by Pearson Education 
12 

File input answer 
// Displays changes in temperature from data in an input file. 

import java.io.*;    // for File 
import java.util.*;  // for Scanner 

public class Temperatures { 
    public static void main(String[] args) 
            throws FileNotFoundException { 
        Scanner input = new Scanner(new File("weather.txt")); 
        double prev = input.nextDouble();   // fencepost 
        for (int i = 1; i <= 7; i++) { 
            double next = input.nextDouble(); 
            System.out.println(prev + " to " + next + 
                    ", change = " + (next - prev)); 
            prev = next; 
        } 
    } 
} 



3 

Copyright 2010 by Pearson Education 
13 

Reading an entire file 
  Suppose we want our program to work no matter how 

many numbers are in the file. 
  Currently, if the file has more numbers, they will not be read. 
  If the file has fewer numbers, what will happen? 

A crash!  Example output from a file with just 3 numbers: 

16.2 to 23.5, change = 7.3 
23.5 to 19.1, change = -4.4 
Exception in thread "main" java.util.NoSuchElementException 
    at java.util.Scanner.throwFor(Scanner.java:838) 
    at java.util.Scanner.next(Scanner.java:1347) 
    at Temperatures.main(Temperatures.java:12) 

Copyright 2010 by Pearson Education 
14 

Scanner exceptions 
  NoSuchElementException 

  You read past the end of the input. 

  InputMismatchException 
  You read the wrong type of token (e.g. read "hi" as an int). 

  Finding and fixing these exceptions: 
  Read the exception text for line numbers in your code 

(the first line that mentions your file; often near the bottom): 

 Exception in thread "main" java.util.NoSuchElementException 
     at java.util.Scanner.throwFor(Scanner.java:838) 
     at java.util.Scanner.next(Scanner.java:1347) 
     at MyProgram.myMethodName(MyProgram.java:19) 
     at MyProgram.main(MyProgram.java:6) 

Copyright 2010 by Pearson Education 
15 

Scanner tests for valid input 

  These methods of the Scanner do not consume input; 
they just give information about what the next token will be. 

  Useful to see what input is coming, and to avoid crashes. 

  These methods can be used with a console Scanner, as well. 

  When called on the console, they sometimes pause waiting for input. 

Method Description 

hasNext() returns true if there is a next token 

hasNextInt() returns true if there is a next token 
and it can be read as an int 

hasNextDouble() returns true if there is a next token 
and it can be read as a double 

Copyright 2010 by Pearson Education 
16 

Using hasNext methods 
  Avoiding type mismatches: 

 Scanner console = new Scanner(System.in); 
 System.out.print("How old are you? "); 
 if (console.hasNextInt()) { 
     int age = console.nextInt();   // will not crash! 
     System.out.println("Wow, " + age + " is old!"); 
 } else { 
     System.out.println("You didn't type an integer."); 
 } 

  Avoiding reading past the end of a file: 
 Scanner input = new Scanner(new File("example.txt")); 
 if (input.hasNext()) { 
     String token = input.next();   // will not crash! 
     System.out.println("next token is " + token); 
 } 

Copyright 2010 by Pearson Education 
17 

File input question 2 
  Modify the temperature program to process the entire file, 

regardless of how many numbers it contains. 
  Example: If a ninth day's data is added, output might be: 

 16.2 to 23.5, change = 7.3 
 23.5 to 19.1, change = -4.4 
 19.1 to 7.4, change = -11.7 
 7.4 to 22.8, change = 15.4 
 22.8 to 18.5, change = -4.3 
 18.5 to -1.8, change = -20.3 
 -1.8 to 14.9, change = 16.7 
 14.9 to 16.1, change = 1.2 

Copyright 2010 by Pearson Education 
18 

File input answer 2 
// Displays changes in temperature from data in an input file. 

import java.io.*;    // for File 
import java.util.*;  // for Scanner 

public class Temperatures { 
    public static void main(String[] args) 
            throws FileNotFoundException { 
        Scanner input = new Scanner(new File("weather.txt")); 
        double prev = input.nextDouble();   // fencepost 
        while (input.hasNextDouble()) { 
            double next = input.nextDouble(); 
            System.out.println(prev + " to " + next + 
                    ", change = " + (next - prev)); 
            prev = next; 
        } 
    } 
} 



4 

Copyright 2010 by Pearson Education 
19 

File input question 3 
  Modify the temperature program to handle files that contain 

non-numeric tokens (by skipping them). 

  For example, it should produce the same output as before 
when given this input file, weather2.txt: 

16.2   23.5 
Tuesday   19.1   Wed 7.4   THURS. TEMP: 22.8 

18.5  -1.8  <-- Here is my data!  --Ally 
   14.9 :-)  

  You may assume that the file begins with a real number. 

Copyright 2010 by Pearson Education 
20 

File input answer 3 
// Displays changes in temperature from data in an input file. 

import java.io.*;    // for File 
import java.util.*;  // for Scanner 

public class Temperatures2 { 
    public static void main(String[] args) 
            throws FileNotFoundException { 
        Scanner input = new Scanner(new File("weather.txt")); 
        double prev = input.nextDouble();   // fencepost 
        while (input.hasNext()) { 
            if (input.hasNextDouble()) { 
                double next = input.nextDouble(); 
                System.out.println(prev + " to " + next + 
                        ", change = " + (next - prev)); 
                prev = next; 
            } else { 
                input.next();  // throw away unwanted token 
            } 
        } 
    } 
} 

Copyright 2010 by Pearson Education 
21 

Election question 
  Write a program that reads a file wapoll.txt of poll data. 

  Format: County Murray%  Rossi%  Month Source 

Grant 41 49 Oct CNN 
King 56 31 Oct U. of Washington 
Yakima 37 56 Sep Seattle Times 

  The program should print how many electoral votes each 
candidate leads in, and who is leading overall in the polls. 

Murray: 134 votes 
Rossi: 136 votes 

Copyright 2010 by Pearson Education 
22 

Election answer 
// Computes leader in WA senatorial polls, based on input file such as: 
// Grant 41 49 Oct CNN 

import java.util.*; 
import java.io.*; 
public class WAElections { 
 public static void main(String[] args) throws     

     FileNotFoundException { 
 File f = new File("wapolls.txt"); 
 Scanner input = new Scanner(f); 
 int murray = 0, rossi = 0; 

 while(input.hasNext()) { 
    if (input.hasNextInt()) { 

        murray += input.nextInt(); 
        rossi += input.nextInt(); 
      } else { 
        input.next(); 
    } 

   } 

 double totalVotes = murray + rossi; 
 System.out.printf("Murray: %d votes (%.1f%%)\n", murray,  

      murray / totalVotes * 100); 
 System.out.printf("Rossi: %d votes (%.1f%%)", rossi,  

      rossi / totalVotes * 100);    
 } 

} 


