
Week 8

Classes and Objects

Special thanks to Scott Shawcroft, Ryan Tucker, and Paul Beck for their work on these slides.

Except where otherwise noted, this work is licensed under:
http://creativecommons.org/licenses/by-nc-sa/3.0

2

OOP and Python

• Python was built as a procedural language

– OOP exists and works fine, but feels a bit more "tacked on"

– Java probably does classes better than Python (gasp)

3

Defining a Class

• Declaring a class:

class Name:

...

– class name is capitalized (e.g. Point)

– saved into a file named name.py (filename is lowercase)

4

Fields

• Declaring a field:

name = value

– Example:

class Point:

x = 0

y = 0

point.py

1
2
3

class Point:
x = 0
y = 0

5

Using a Class

from name import *

– client programs must import the classes they use

– the file name (lowercase), not class name, is used

point_main.py

1
2
3
4
5
6
7
8

from point import *

main
p1 = Point()
p1.x = 7
p1.y = -3

...

6

"Implicit" Parameter (self)

• Java object methods refer to the object's fields implicitly:

public void translate(int dx, int dy) {
x += dx;
y += dy; // change this object's x/y

}

• Python's implicit parameter is named self
– self must be the first parameter of any object method

– access the object's fields as self. field

def translate(self , dx, dy):
self .x += dx
self .y += dy

7

Methods

def name(self [, parameter, ..., parameter]):
statements

– Example:
class Point:

def translate(self, dx, dy):
self.x += dx
self.y += dy

...

– Exercise: Write the following methods in class Point :
• set_location
• draw
• distance

8

Exercise Answer
point.py

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

from math import *

class Point:
x = 0
y = 0

def set_location(self, x, y):
self.x = x
self.y = y

def draw(self, panel):
panel.canvas.create_oval(self.x, self.y, \

self.x + 3, self.y + 3)
panel.canvas.create_text(self.x, self.y, \

text=str(self), anchor="sw")

def distance(self, other):
dx = self.x - other.x
dy = self.y - other.y
return sqrt(dx * dx + dy * dy)

9

Initializing Objects

• Right now, clients must initialize Point s like this:

p = Point()

p.x = 3

p.y = -5

• We'd prefer to be able to say:

p = Point(3, -5)

10

Constructors

def __init__(self [, parameter, ..., parameter]):
statements

– a constructor is a special method with the name __init__
that initializes the state of an object

– Example:

class Point:
def __init__(self, x, y):

self.x = x
self.y = y

11

More About Fields

– fields can be declared directly inside class,
or just in the constructor as shown here (more common)

point.py

1
2
3
4
5

class Point:
def __init__(self, x, y):

self.x = x
self.y = y

...

>>> p = Point(5, -2)
>>> p.x
5
>>> p.y
-2

12

Printing Objects

• By default, Python doesn't know how to print an object:

• We'd like to be able to print a Point object and have its

state shown as the output.

>>> p = Point(5, -2)
>>> print p
<Point instance at 0x00A8A850>

13

Printable Objects: __str__

def __str__(self):

return string

– converts an object into a string (like Java toString method)

– invoked automatically when str or print is called

def __str__(self):

return "(" + str(self.x) + ", " + str(self.y) + ")"

>>> p = Point(5, -2)
>>> print p
(5, -2)
>>> print "The point is " + str(p) + "!"
The point is (5, -2)!

14

Complete Point Class

point.py

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

from math import *

class Point:
def __init__(self, x, y):

self.x = x
self.y = y

def distance_from_origin(self):
return sqrt(self.x * self.x + self.y * self.y)

def distance(self, other):
dx = self.x - other.x
dy = self.y - other.y
return sqrt(dx * dx + dy * dy)

def translate(self, dx, dy):
self.x += dx
self.y += dy

def __str__(self):
return "(" + str(self.x) + ", " + str(self.y) + ")"

15

Exercise

• Rewrite the Bomb Java program in Python.

– For simplicity, change the console I/O to:

Blast site x? 100
Blast site y? 100
Blast radius? 80

• For extra challenge, modify the program to randomly
choose a city, nuke that city, and also turn red any cities
within the blast radius of 80 px. Don't prompt the console.

16

Python Object Details

• Drawbacks

– Does not have encapsulation like Java (ability to protect fields'
data from access by client code)

– Not easy to have a class with multiple constructors

– Must explicitly declare self parameter in all methods

– Strange names like __str__ , __init__

• Benefits

– operator overloading: Define < by writing __lt__ , etc.

http://docs.python.org/ref/customization.html

