
Copyright 2008 by Pearson Education

Building Java Programs

Graphics

reading: Supplement 3G

videos: Ch. 3G #1-2

Copyright 2008 by Pearson Education
2

Code “Libraries”

 For homework 3 (and others), we’ll use a Graphics Library
written by the textbook authors

 Library: Code written to make it easier to write many
programs

 Graphics library: Provide features like “draw a black oval”

 Library takes care of all the drawing details

 Library is useful for lots of different programs

 “Feels like” Java has all these features, but it’s really just methods
and objects defined by the library

 Steps for using a library

1. What “set up” do I have to do to use the library?

2. What are the basic features of the library?

3. What are the patterns for making the features useful?

Copyright 2008 by Pearson Education
3

1. Set-up

 The library is in DrawingPanel.java

 On course web-site

 Must be in the same directory as your program

 Your program must have

import java.awt.*;

in your file before public class …

 Otherwise “things” the library gives you won’t be defined and
your program won’t compile

 These “things” are kinds of objects (classes) defined in Java’s
“package” called java.awt

 import says you want these things to be visible to your
program

Copyright 2008 by Pearson Education
4

2. Basics, part 1

A complete program using the library to draw 2 ovals:

import java.awt.*;

public class MyFirstDrawing {

public static void main(String[] args) {

DrawingPanel panel = new DrawingPanel(300,200);

Graphics g = panel.getGraphics();

g.setColor(Color.BLACK);

g.drawOval(100,100,50,50);

g.drawOval(125,100,75,75);

}

}

Copyright 2008 by Pearson Education
5

Line by line

DrawingPanel panel = new DrawingPanel(300,200);

1. Create a new DrawingPanel

 A canvas to draw things on

 Make it 300 pixels wide

and 200 pixels high

 These are parameters to the

DrawingPanel constructor

2. Store a reference to this new thing in a variable panel

 The library made DrawingPanel a type (like int, String)

 Otherwise nothing novel about this part, just declaration and
initialization

Copyright 2008 by Pearson Education
6

Line by line

DrawingPanel panel = new DrawingPanel(300,200);

Graphics g = panel.getGraphics();

1. Call the panel’s getGraphics method

 Returns a Graphics object (a “pen” for

drawing with on the canvas)

 (We’ll learn how to write methods that

return things next time)

2. Store a reference to this “pen” in a variable g

 Again, this part is old news, the new things are:

 A DrawingPanel has methods we can call

 They are part of a DrawingPanel

 These methods can return things

Copyright 2008 by Pearson Education
7

Line by line

DrawingPanel panel = new DrawingPanel(300,200);

Graphics g = panel.getGraphics();

g.setColor(Color.BLACK);

 A Graphics object, like the one in g,

also has methods we can call

 The setColor method takes a parameter, which is a Color

 The setColor method changes the pen’s color

 No immediate effect; affects subsequent drawings

Copyright 2008 by Pearson Education
8

Line by line

DrawingPanel panel = new DrawingPanel(300,200);

Graphics g = panel.getGraphics();

g.setColor(Color.BLACK);

g.drawOval(100,100,50,50);

 Another method a Graphics object

has draws an oval

 The parameters describe its position and its size

 See how useful parameters are!

 Details on which parameter is which a little later

 (and in book)

Copyright 2008 by Pearson Education
9

Line by line

DrawingPanel panel = new DrawingPanel(300,200);

Graphics g = panel.getGraphics();

g.setColor(Color.BLACK);

g.drawOval(100,100,50,50);

g.drawOval(125,100,75,75);

 Keep drawing objects to make

a picture

 Teaser: Everything we’ve learned will help us automate

picture drawing

 Example: A loop to draw similar shapes near each other

Copyright 2008 by Pearson Education
10

Where are we

1. What “set up” do I have to do to use the library? Done

2. What are the basic features of the library? In progress

3. What are the patterns for making the features useful?

Next steps:

 The general organization of the library

 More basic features (rectangles, filling, colors, etc.)

 How this is object-oriented and the new Java features we
are using

Then the fun stuff:

 Using loops and parameters to make cool and useful
pictures

Copyright 2008 by Pearson Education
11

Graphical objects - Recap
The library gives us 3 new kinds of objects:

 DrawingPanel: A window on the screen.

 Graphics: A "pen" to draw shapes/lines on a window.

 Color: Colors in which to draw shapes.

Copyright 2008 by Pearson Education
12

Coordinate system
 Each (x, y) position is a pixel ("picture element").

 (0, 0) is at the window's top-left corner.

 x increases rightward and the y increases downward.

 The rectangle from (0, 0) to (200, 100) looks like this:

(0, 0) x+

(200, 100)

y+

Copyright 2008 by Pearson Education
13

Graphics

"Pen" objects that can draw lines and shapes

 Access it by calling getGraphics on your DrawingPanel.

Graphics g = panel.getGraphics();

 Draw shapes by calling methods
on the Graphics object.

g.fillRect(10, 30, 60, 35);

g.fillOval(80, 40, 50, 70);

Copyright 2008 by Pearson Education
14

Graphics methods

Method name Description

g.drawLine(x1, y1, x2, y2); line between points (x1, y1), (x2, y2)

g.drawOval(x, y, width, height); outline largest oval that fits in a box of
size width * height with top-left at (x, y)

g.drawRect(x, y, width, height); outline of rectangle of size
width * height with top-left at (x, y)

g.drawString(text, x, y); text with bottom-left at (x, y)

g.fillOval(x, y, width, height); fill largest oval that fits in a box of size
width * height with top-left at (x, y)

g.fillRect(x, y, width, height); fill rectangle of size width * height
with top-left at (x, y)

g.setColor(Color); set Graphics to paint any following

shapes in the given color

Copyright 2008 by Pearson Education
15

Color

 Create one using Red-Green-Blue (RGB) values from 0-255

Color name = new Color(red, green, blue);

 Example:

Color brown = new Color(192, 128, 64);

 Or use a predefined Color class constant (more common)

Color.CONSTANT_NAME

where CONSTANT_NAME is one of:

 BLACK, BLUE, CYAN, DARK_GRAY, GRAY,

GREEN, LIGHT_GRAY, MAGENTA, ORANGE,

PINK, RED, WHITE, YELLOW

Copyright 2008 by Pearson Education
16

Using Colors
 Pass a Color to Graphics object's setColor method

 Subsequent shapes will be drawn in the new color.

g.setColor(Color.BLACK);

g.fillRect(10, 30, 100, 50);

g.drawLine(20, 0, 10, 30);

g.setColor(Color.RED);

g.fillOval(60, 40, 40, 70);

 Pass a color to DrawingPanel's setBackground method

 The overall window background color will change.

Color brown = new Color(192, 128, 64);

panel.setBackground(brown);

Copyright 2008 by Pearson Education
17

Mini-Exercises
 Write a program that draws a solid blue circle

with radius 60 centered at x=100, y=100.

 Extend your program to outline the circle in black.

 Reminders:
import java.awt.*;

public class CircleExample {

public static void main(String[] args) {

DrawingPanel panel = new DrawingPanel(200, 200);

Graphics g = panel.getGraphics();

g.drawOval(x, y, width, height); outline largest oval that fits in a box of
size width * height with top-left at (x, y)

g.fillOval(x, y, width, height); fill largest oval that fits in a box of size
width * height with top-left at (x, y)

g.setColor(Color); set Graphics to paint any following

shapes in the given color

Copyright 2008 by Pearson Education
18

Mini-exercises - solutions

import java.awt.*; // so I can use Graphics

public class CircleExample {

public static void main(String[] args) {

DrawingPanel panel = new DrawingPanel(200, 200);

Graphics g = panel.getGraphics();

// to make a blue circle with radius 60,

// draw an oval with width=height=120

g.setColor(Color.BLUE);

g.fillOval(40, 40, 120, 120);

// black outline

g.setColor(Color.BLACK);

g.drawOval(40, 40, 120, 120);

}

}

Copyright 2008 by Pearson Education
19

Objects (briefly)
 object: An entity that contains data and behavior.

 data: Variables inside the object.

 behavior: Methods inside the object.

 You interact with the methods; the data is hidden in the object.

 Constructing (creating) an object:

type objectName = new type(parameters);

 Calling an object's method:

objectName.methodName(parameters);

Copyright 2008 by Pearson Education
20

Object-oriented

Two perspectives on, for example, setting a pen’s color:

1. I have a procedure for changing a pen’s color and and I
will apply it to this pen I have

 “Verb-oriented”: focus is on the changer you have

 Would look like setColor(g,Color.BLACK)

2. I consider a pen’s color to be part of the pen, so to change
the color I will use one of the pen’s methods

 “Noun-oriented”: focus is on the pen and what it can do

 Looks like g.setColor(Color.BLACK);

Our Graphics library takes the second approach

 Most Java libraries do because the language has good support
for defining and using libraries this way

Copyright 2008 by Pearson Education
21

Where are we

1. What “set up” do I have to do to use the library? Done

2. What are the basic features of the library? Done

3. What are the patterns for making the features useful?

The fun stuff:

 Using loops and parameters to make cool and useful
pictures

Copyright 2008 by Pearson Education
22

Drawing with loops
 The x,y, w,h expression can use a loop counter variable:

DrawingPanel panel = new DrawingPanel(400, 300);

panel.setBackground(Color.YELLOW);

Graphics g = panel.getGraphics();

g.setColor(Color.RED);

for (int i = 1; i <= 10; i++) {

g.fillOval(100 + 20 * i, 5 + 20 * i, 50, 50);

}

 Nested loops are okay as well:

DrawingPanel panel = new DrawingPanel(250, 250);

Graphics g = panel.getGraphics();

g.setColor(Color.BLUE);

for (int x = 1; x <= 4; x++) {

for (int y = 1; y <= 9; y++) {

g.drawString("Java", x * 40, y * 25);

}

}

Copyright 2008 by Pearson Education
23

Loops that begin at 0
 Beginning at 0 and using < can make coordinates easier.

 Example:

 Draw ten stacked rectangles starting at (20, 20), height 10,
width starting at 100 and decreasing by 10 each time:

DrawingPanel panel = new DrawingPanel(160, 160);

Graphics g = panel.getGraphics();

for (int i = 0; i < 10; i++) {

g.drawRect(20, 20 + 10 * i, 100 - 10 * i, 10);

}

Copyright 2008 by Pearson Education
24

Loops mini-exercise
 Modify the stacked rectangles program to draw ten stacked

rectangles starting at (20, 20), height 10, each one with
width 100. (So the width doesn’t change.)

 Width-changing version
DrawingPanel panel = new DrawingPanel(160, 160);

Graphics g = panel.getGraphics();

for (int i = 0; i < 10; i++) {

g.drawRect(20, 20 + 10 * i, 100 - 10 * i, 10);

}

Copyright 2008 by Pearson Education
25

Loops mini-exercise -
solution

DrawingPanel panel = new DrawingPanel(160, 160);

Graphics g = panel.getGraphics();

for (int i = 0; i < 10; i++) {

g.drawRect(20, 20 + 10 * i, 100, 10);

}

Copyright 2008 by Pearson Education
26

Superimposing shapes
 When ≥ 2 shapes occupy the same pixels, the last drawn "wins."

import java.awt.*;

public class Car {

public static void main(String[] args) {

DrawingPanel panel = new DrawingPanel(200, 100);

panel.setBackground(Color.LIGHT_GRAY);

Graphics g = panel.getGraphics();

g.setColor(Color.BLACK);

g.fillRect(10, 30, 100, 50);

g.setColor(Color.RED);

g.fillOval(20, 70, 20, 20);

g.fillOval(80, 70, 20, 20);

g.setColor(Color.CYAN);

g.fillRect(80, 40, 30, 20);

}

}

Copyright 2008 by Pearson Education
27

Drawing with methods
 To draw in multiple methods, you must pass Graphics g.

import java.awt.*;

public class Car2 {

public static void main(String[] args) {

DrawingPanel panel = new DrawingPanel(200, 100);

panel.setBackground(Color.LIGHT_GRAY);

Graphics g = panel.getGraphics();

drawCar(g);

}

public static void drawCar(Graphics g) {

g.setColor(Color.BLACK);

g.fillRect(10, 30, 100, 50);

g.setColor(Color.RED);

g.fillOval(20, 70, 20, 20);

g.fillOval(80, 70, 20, 20);

g.setColor(Color.CYAN);

g.fillRect(80, 40, 30, 20);

}

}

Copyright 2008 by Pearson Education
28

Parameterized figures
 Modify the car-drawing method so that it can draw cars at

different positions, as in the following image.

 Top-left corners: (10, 30), (150, 10)

Copyright 2008 by Pearson Education
29

Parameterized answer
import java.awt.*;

public class Car3 {

public static void main(String[] args) {

DrawingPanel panel = new DrawingPanel(260, 100);

panel.setBackground(Color.LIGHT_GRAY);

Graphics g = panel.getGraphics();

drawCar(g, 10, 30);

drawCar(g, 150, 10);

}

public static void drawCar(Graphics g, int x, int y) {

g.setColor(Color.BLACK);

g.fillRect(x, y, 100, 50);

g.setColor(Color.RED);

g.fillOval(x + 10, y + 40, 20, 20);

g.fillOval(x + 70, y + 40, 20, 20);

g.setColor(Color.CYAN);

g.fillRect(x + 70, y + 10, 30, 20);

}

}

Copyright 2008 by Pearson Education
30

 Modify drawCar to allow the car to be drawn at any size.

 Existing car: size 100

 Second car: size 50, top/left at (150, 10)

 Then use a for loop to draw a line of cars.

 Start at (10, 130), each car size 40, separated by 50px.

Drawing parameter question

Copyright 2008 by Pearson Education
31

Drawing parameter answer
import java.awt.*;

public class Car4 {
public static void main(String[] args) {

DrawingPanel panel = new DrawingPanel(210, 100);
panel.setBackground(Color.LIGHT_GRAY);

Graphics g = panel.getGraphics();
drawCar(g, 10, 30, 100);
drawCar(g, 150, 10, 50);

for (int i = 0; i < 5; i++) {
drawCar(g, 10 + i * 50, 130, 40);

}
}

public static void drawCar(Graphics g, int x, int y, int size) {
g.setColor(Color.BLACK);
g.fillRect(x, y, size, size / 2);

g.setColor(Color.RED);
g.fillOval(x + size / 10, y + 2 * size / 5,

size / 5, size / 5);
g.fillOval(x + 7 * size / 10, y + 2 * size / 5,

size / 5, size / 5);

g.setColor(Color.CYAN);
g.fillRect(x + 7 * size / 10, y + size / 10,

3 * size / 10, size / 5);
}

}

Copyright 2008 by Pearson Education
32

Extra exercises

What follows are a couple exercises related to the slides
that you can try on your own (not done in class)

Copyright 2008 by Pearson Education
33

More Drawing w/ loops questions
 Code from earlier slide:

DrawingPanel panel = new DrawingPanel(160, 160);

Graphics g = panel.getGraphics();

for (int i = 0; i < 10; i++) {

g.drawRect(20, 20 + 10 * i, 100 - 10 * i, 10);

}

 Write variations of the above
program that draw the figures
at right as output.

Copyright 2008 by Pearson Education
34

Drawing w/ loops answers
 Solution #1:

Graphics g = panel.getGraphics();

for (int i = 0; i < 10; i++) {

g.drawRect(20 + 10 * i, 20 + 10 * i,

100 - 10 * i, 10);

}

 Solution #2:
Graphics g = panel.getGraphics();

for (int i = 0; i < 10; i++) {

g.drawRect(110 - 10 * i, 20 + 10 * i,

10 + 10 * i, 10);

}

