
Copyright 2008 by Pearson Education

Building Java Programs

Chapter 8

Encapsulation, this, Subclasses

Copyright 2008 by Pearson Education

Today

 Finish our earthquake example

 Use a Circle class to draw the circle and decide red-ness

 Encapsulation

 A really big deal when writing larger programs

 Need to use private fields on homework 8 (not difficult)

 The keyword this: Kind of a Chapter 8 loose end

 Subclasses and polymorphism

 Will continue next Wednesday

Copyright 2008 by Pearson Education

Using the Circle class

 Has lots of features we don’t need

 That’s normal

 Implementation uses some features we’ll learn later today

 But clients don’t care

 Uses a Point object

 It’s normal for many classes to interact in many ways

 Simplifies the red-ness calculation

 Just to clients, the contains method has the same

computation

Copyright 2008 by Pearson Education
4

Encapsulation

reading: 8.5 - 8.6

self-check: #13-17

exercises: #5

Copyright 2008 by Pearson Education
5

Encapsulation
 encapsulation: Hiding implementation details of an

object from its clients.

 Encapsulation provides abstraction.

 separates external view (behavior) from internal view (state)

 Encapsulation protects the integrity of an object's data.

Copyright 2008 by Pearson Education
6

Private fields
 A field can be declared private.

 No code outside the class can access or change it.

private type name;

 Examples:

private int id;

private String name;

 Client code sees an error when accessing private fields:

PointMain.java:11: x has private access in Point

System.out.println("p1 is (" + p1.x + ", " + p1.y + ")");

^

Copyright 2008 by Pearson Education
7

Accessing private state
 We can provide methods to get and/or set a field's value:

// A "read-only" access to the x field ("accessor")

public int getX() {

return x;

}

// Allows clients to change the x field ("mutator")

public void setX(int newX) {

x = newX;

}

 Client code will look more like this:

System.out.println("p1: (" + p1.getX() + ", " + p1.getY() + ")");

p1.setX(14);

Copyright 2008 by Pearson Education
8

Point class, revised
// A Point object represents an (x, y) location.
public class Point {

private int x;
private int y;

public Point(int initialX, int initialY) {
x = initialX;
y = initialY;

}

public double distanceFromOrigin() {
return Math.sqrt(x * x + y * y);

}

public int getX() {
return x;

}

public int getY() {
return y;

}

public void setLocation(int newX, int newY) {
x = newX;
y = newY;

}

public void translate(int dx, int dy) {
x = x + dx;
y = y + dy;

}
}

Copyright 2008 by Pearson Education
9

Client code
public class PointMain {

public static void main(String[] args) {

// create two Point objects

Point p1 = new Point(5, 2);

Point p2 = new Point(4, 3);

// print each point

System.out.println("p1: (" + p1.getX() + ", " + p1.getY() + ")");

System.out.println("p2: (" + p2.getX() + ", " + p2.getY() + ")");

// move p2 and then print it again

p2.translate(2, 4);

System.out.println("p2: (" + p2.getX() + ", " + p2.getY() + ")");

}

}

OUTPUT:
p1 is (5, 2)

p2 is (4, 3)

p2 is (6, 7)

Copyright 2008 by Pearson Education
10

Benefits of encapsulation
 Provides abstraction between an object and its clients.

 Protects an object from unwanted access by clients.

 A bank app forbids a client to change an Account's balance.

 Allows you to change the class implementation.

 Point could be rewritten to use polar coordinates

(radius r, angle θ), but with the same methods.

 Like Apple building a cheaper iPod w/o you knowing

 Allows you to constrain objects' state (invariants).

 Example: Only allow Points with non-negative coordinates.

Copyright 2008 by Pearson Education
11

Example: Polar points
// A Point object represents an (x, y) location.
// This version has a simpler distanceFromOrigin but more complicated
// everything else, but clients can’t tell
public class Point {

private double r;
private double theta;

public Point(int initialX, int initialY) {
setLocation(initialX, initialY);

}

public double distanceFromOrigin() {
return r;

}

public int getX() {
return (int) (r * Math.cos(theta));

}

public int getY() {
return (int) (r * Math.sin(theta));

}

public void setLocation(int newX, int newY) {
r = Math.sqrt(newX * newX + newY * newY);
theta = Math.atan2(newX, newY); // library method of just what we need

}

public void translate(int dx, int dy) {
setLocation(dx + getX(), dy + getY());

}
}

Copyright 2008 by Pearson Education
12

The keyword this

reading: 8.7

Copyright 2008 by Pearson Education
13

this
 this : A reference to the implicit parameter.

 implicit parameter: object on which a method is called

 Common uses for this:

 To refer to a field (this is usually optional):

this.field

 To call a method (this is optional):

this.method(parameters);

 To use “yourself” as an argument:

this

 To call a constructor from another constructor:

this(parameters);

Copyright 2008 by Pearson Education
14

Variable names and scope
 Usually it is illegal to have two variables in the same scope

with the same name.

public class Point {

private int x;

private int y;

...

public void setLocation(int newX, int newY) {

x = newX;

y = newY;

}

}

 The parameters to setLocation are named newX and newY to
be distinct from the object's fields x and y.

Copyright 2008 by Pearson Education
15

Variable shadowing
 An instance-method parameter can have the same name as

one of the object's fields:

// this is legal

public void setLocation(int x, int y) {

...

}

 Fields x and y are shadowed by parameters with same names.

 Any setLocation code that refers to x or y will use the

parameter, not the field.

Copyright 2008 by Pearson Education
16

Using this with shadowing
public class Point {

private int x;

private int y;

...

public void setLocation(int x, int y) {

this.x = x;

this.y = y;

}

}

 Inside the setLocation method,

 When this.x is seen, the field x is used.

 When x is seen, the parameter x is used.

 Can always use this.x for field access if you want

Copyright 2008 by Pearson Education
17

this for method calls

 We know one instance method can call another:

public String toString() {

return "(" + x + ", " + y + ")";

}

public void draw(Graphics g) {

g.fillOval(x, y, 2, 2);

g.drawString(toString(), x, y);

}

 The implicit parameter is “passed along to the callee”

 Can make this explicit if you want, but not necessary

public String toString() {

return "(" + x + ", " + y + ")";

}

public void draw(Graphics g) {

g.fillOval(x, y, 2, 2);

g.drawString(this.toString(), x, y);

}

Copyright 2008 by Pearson Education
18

Passing yourself

 Occasionally want to pass “the whole current object” to
another method

 Example that works as a more complicated replacement:

 Instead of:

public double distFromOrigin() {

Point p = new Point(0,0);

return distance(p);

}

 Could do:

public double distFromOrigin() {

Point p = new Point(0,0);

return p.distance(this);

}

Copyright 2008 by Pearson Education
19

Multiple constructors
 It is legal to have more than one constructor in a class.

 The constructors must accept different parameters.

public class Point {

private int x;

private int y;

public Point() {
x = 0;
y = 0;

}

public Point(int initialX, int initialY) {

x = initialX;

y = initialY;

}

...

}

Copyright 2008 by Pearson Education
20

Constructors and this

 One constructor can call another using this

 This use of this is different from the others (weird but useful)

public class Point {

private int x;

private int y;

public Point() {

this(0, 0); // calls the (x, y) constructor

}

public Point(int x, int y) {

this.x = x;

this.y = y;

}

...

}

Copyright 2008 by Pearson Education
21

Inheritance

Chapter 9

Lecture 9-1: Inheritance

reading: 9.1 - 9.2

Copyright 2008 by Pearson Education
22

An Employee class
// A class to represent employees in general

public class Employee {

public int getHours() {

return 40; // works 40 hours / week

}

public double getSalary() {

return 40000.0; // $40,000.00 / year

}

public int getVacationDays() {

return 10; // 2 weeks' paid vacation

}

public String getVacationForm() {

return "yellow"; // use the yellow form

}

}

 Exercise: Implement class TechWriter, based on the previous
employee regulations. (Tech writers can write manuals.)

Copyright 2008 by Pearson Education
23

Redundant TechWriter class
// A redundant class to represent tech writers.

public class TechWriter {

public int getHours() {

return 40; // works 40 hours / week

}

public double getSalary() {

return 40000.0; // $40,000.00 / year

}

public int getVacationDays() {

return 10; // 2 weeks' paid vacation

}

public String getVacationForm() {

return "yellow"; // use the yellow form

}

public void writeManual(String app) {

System.out.println("Writing a manual about: " + app);

}

}

Copyright 2008 by Pearson Education
24

Desire for code-sharing
 writeManual is the only unique behavior in TechWriter.

 We'd like to be able to say:

// A class to represent tech writers.

public class TechWriter {

copy all the contents from the Employee class;

public void writeManual(String app) {

System.out.println("Writing a manual about: " + app);

}

}

Copyright 2008 by Pearson Education
25

Inheritance
 inheritance: A way to form new classes based on existing

classes, taking on their attributes/behavior.

 a way to group related classes

 a way to share code between two or more classes

 One class can extend another, absorbing its data/behavior.

 superclass: The parent class that is being extended.

 subclass: The child class that extends the superclass and
inherits its behavior.

 Subclass gets a copy of every field and method from superclass

Copyright 2008 by Pearson Education
26

Inheritance syntax
public class name extends superclass {

 Example:

public class TechWriter extends Employee {

...

}

 By extending Employee, each TechWriter object now:

 receives a getHours, getSalary, getVacationDays, and
getVacationForm method automatically

 can be treated as an Employee by client code (seen later)

Copyright 2008 by Pearson Education
27

Improved TechWriter code
// A class to represent tech writers.

public class TechWriter extends Employee {

public void writeManual(String app) {

System.out.println("Writing a manual about: " + app);

}

}

 Now we only write the parts unique to each type.

 TechWriter inherits getHours, getSalary, getVacationDays,
and getVacationForm methods from Employee.

 TechWriter adds the writeManual method.

Copyright 2008 by Pearson Education
28

Mini-Exercise
 Define a Programmer class that includes a "designGame"

method (these programmers work for a gaming company).
This method should just print out an informative note.

Cheat sheet:

// A class to represent tech writers.

public class TechWriter extends Employee {

public void writeManual(String app) {

System.out.println("Writing a manual about: " + app);

}

}

Copyright 2008 by Pearson Education
29

Mini-Exercise - solution
 Define a Programmer class that includes a "designGame"

method (these programmers work for a gaming company).

// A class to represent programmers at a game company.

public class Programmer extends Employee {

public void designGame(String name) {

System.out.println(Designing the " + name + " game");

}

}

// sample uses:

// Programmer chris = new Programmer();

// chris.designGame("Dragon5000");

// double dollars = chris.getSalary();

Copyright 2008 by Pearson Education
30

Implementing Lawyer

 Consider the following lawyer regulations:

 Lawyers who get an extra week of paid vacation (a total of 3).

 Lawyers use a pink form when applying for vacation leave.

 Lawyers have some unique behavior: they know how to sue.

 Problem: We want lawyers to inherit most behavior from
employee, but we want to replace parts with new behavior.

Copyright 2008 by Pearson Education
31

Overriding methods
 override: To write a new version of a method in a subclass

that replaces the superclass's version.

 No special syntax required to override a superclass method.
Just write a new version of it in the subclass.

public class Lawyer extends Employee {

// overrides getVacationForm method in Employee class

public String getVacationForm() {

return "pink";

}

...

}

 Exercise: Complete the Lawyer class.

 (3 weeks vacation, pink vacation form, can sue)

Copyright 2008 by Pearson Education
32

Lawyer class
// A class to represent lawyers.

public class Lawyer extends Employee {

// overrides getVacationForm from Employee class

public String getVacationForm() {

return "pink";

}

// overrides getVacationDays from Employee class

public int getVacationDays() {

return 15; // 3 weeks vacation

}

public void sue() {

System.out.println("I'll see you in court!");

}

}

 Exercise: Complete the Marketer class. Marketers make
$10,000 extra ($50,000 total) and know how to advertise.

Copyright 2008 by Pearson Education
33

Levels of inheritance
 Multiple levels of inheritance in a hierarchy are allowed.

 Example: A bilingual tech writer is the same as a regular tech
writer but makes more money ($45,000) and can also write
manuals in (say) German.

public class BilingualTechWriter extends TechWriter {

...

}

 Next time: Using the fact that any BilingualTechWriter or
TechWriter is also an Employee

 And the Java compiler knows it

