
Copyright 2008 by Pearson Education
1

References and objects
 Arrays and objects use reference semantics. Why?

 efficiency. Copying large objects slows down a program.

 sharing. It's useful to share an object's data among methods.

DrawingPanel panel1 = new DrawingPanel(80, 50);

DrawingPanel panel2 = panel1; // same window

panel2.setBackground(Color.CYAN);

panel1

panel2

Copyright 2008 by Pearson Education
2

Objects as parameters
 When an object is passed as a parameter, the object is not

copied. The parameter refers to the same object.

 The arrow is copied.

 If the parameter is modified, it will affect the original object.

public static void main(String[] args) {

DrawingPanel window = new DrawingPanel(80, 50);

window.setBackground(Color.YELLOW);

example(window);

}

public static void example(DrawingPanel panel) {

panel.setBackground(Color.CYAN);

}

panel

window

Copyright 2008 by Pearson Education

Building Java Programs

Chapter 8

Lecture 8-1: Classes and Objects

reading: 8.1 - 8.3

self-checks: #1-9

exercises: #1-4

Copyright 2008 by Pearson Education
4

A programming problem
 Given a file of cities' (x, y) coordinates,

which begins with the number of cities:
6

50 20

90 60

10 72

74 98

5 136

150 91

 Write a program to draw the cities on a DrawingPanel, then

identify which cities will be affected by an earthquake by coloring
them red

Epicenter x/y? 100 100

Radius of effect? 75

Copyright 2008 by Pearson Education
5

A bad solution

Scanner input = new Scanner(new File("cities.txt"));

int cityCount = input.nextInt();

int[] xCoords = new int[cityCount];

int[] yCoords = new int[cityCount];

for (int i = 0; i < cityCount; i++) {

xCoords[i] = input.nextInt(); // read each city

yCoords[i] = input.nextInt();

}

...

 parallel arrays: 2+ arrays with related data at same indexes.

 Considered poor style: put related data together

Copyright 2008 by Pearson Education
6

Observations
 This problem would be easier to solve if

there were such a thing as a Point object.

 A Point would store a city's x/y data.

 Could compare distances between Points

to see how far a city is from the epicenter.

 Each Point would know how to draw itself.

 The overall program would be shorter and cleaner.

Copyright 2008 by Pearson Education
7

Clients of objects
 client program: A program that uses objects.

 Example: Circles is a client of DrawingPanel and Graphics.

Circles.java (client program)

public class Circles {

main(String[] args) {

new DrawingPanel(...)

new DrawingPanel(...)

...

}

}

DrawingPanel.java (class)

public class DrawingPanel {

...

}

Copyright 2008 by Pearson Education
8

Classes and objects
 class: A program entity that represents either:

1. A program / module, or

2. A template for a new type of objects.

 The DrawingPanel class is a template for creating
DrawingPanel objects.

 object: An entity that combines state and behavior.

 object-oriented programming (OOP): Programs that

perform their behavior as interactions among objects.

Copyright 2008 by Pearson Education
9

Blueprint analogy
iPod blueprint

state:
current song
volume
battery life

behavior:
power on/off
change station/song
change volume
choose random song

iPod #1

state:
song = "1,000,000 Miles"
volume = 17
battery life = 2.5 hrs

behavior:
power on/off
change station/song
change volume
choose random song

iPod #2

state:
song = "Letting You"
volume = 9
battery life = 3.41 hrs

behavior:
power on/off
change station/song
change volume
choose random song

iPod #3

state:
song = "Discipline"
volume = 24
battery life = 1.8 hrs

behavior:
power on/off
change station/song
change volume
choose random song

creates

Copyright 2008 by Pearson Education
10

Abstraction
 abstraction: A distancing between ideas and details.

 We can use objects without knowing how they work.

 abstraction in an iPod:

 You understand its external behavior (buttons, screen).

 You don't understand its inner details, and you don't need to.

Copyright 2008 by Pearson Education
11

Our task
 In the following slides, we will implement a Point class as

a way of learning about classes.

 We will define a type of objects named Point.

 Each Point object will contain x/y data called fields.

 Each Point object will contain behavior called methods.

 Client programs will use the Point objects.

Copyright 2008 by Pearson Education
12

Point objects (desired)
Point p1 = new Point(5, -2);

Point p2 = new Point(); // origin, (0, 0)

 Data in each Point object:

 Methods in each Point object:

Method name Description

setLocation(x, y) sets the point's x and y to the given values

translate(dx, dy) adjusts the point's x and y by the given amounts

distance(p) how far away the point is from point p

draw(g) displays the point on a drawing panel

Field name Description

x the point's x-coordinate

y the point's y-coordinate

Copyright 2008 by Pearson Education
13

Point class as blueprint

 The class (blueprint) describes how to create objects.
 Each object contains its own data and methods.

Point class

state:
int x, y

behavior:
setLocation(int x, int y)

translate(int dx, int dy)

distance(Point p)

draw(Graphics g)

Point object #1

state:
x = 5, y = -2

behavior:
setLocation(int x, int y)
translate(int dx, int dy)
distance(Point p)
draw(Graphics g)

Point object #2

state:
x = -245, y = 1897

behavior:
setLocation(int x, int y)
translate(int dx, int dy)
distance(Point p)
draw(Graphics g)

Point object #3

state:
x = 18, y = 42

behavior:
setLocation(int x, int y)
translate(int dx, int dy)
distance(Point p)
draw(Graphics g)

Copyright 2008 by Pearson Education
14

Object state:
Fields

reading: 8.2

self-check: #5-6

Copyright 2008 by Pearson Education
15

Point class, version 1
public class Point {

int x;

int y;

}

 Save this code into a file named Point.java.

 The above code creates a new type named Point.

 Each Point object contains two pieces of data:

 an int named x, and

 an int named y.

 Point objects do not contain any behavior (yet).

Copyright 2008 by Pearson Education
16

Fields
 field: A variable inside an object that is part of its state.

 Each object has its own copy of each field.

 Part of the object; best not to think of them as variables

 Declaration syntax:

type name;

 Example:

public class Student {

String name; // each Student object has a

double gpa; // name and gpa field

}

Copyright 2008 by Pearson Education
17

Mini-exercise
 Define a class LibraryBook with three fields: one for the

author, one for the title, and one that says whether or not
the book is checked out.

(For simplicity, assume there is always just one author; we
are also ignoring call numbers and so forth.)

Cheat sheet:

public class Student {

String name; // each Student object has a

double gpa; // name and gpa field

}

Copyright 2008 by Pearson Education
18

Mini-exercise - solution
 Define a class LibraryBook with three fields: one for the

author, one for the title, and one that says whether or not
the book is checked out. (For simplicity, assume there is
always just one author; we are also ignoring call numbers
and so forth.)

 Solution:

public class LibraryBook {
String author;
String title;
boolean checkedOut;

}

Copyright 2008 by Pearson Education
19

Accessing fields
 We can access and modify an object's fields.

 access: variable.field

 modify: variable.field = value;

 Example:

Point p1 = new Point();

Point p2 = new Point();

p1.x = 10; // modify

p1.y = 20; // modify

System.out.println(p1.x + "," + p1.y); // access

Output: 10,20

Copyright 2008 by Pearson Education
20

A class and its client
 Point.java is not, by itself, a runnable program.

 A class can be used by client programs.

MyProgram.java (client program)

public class MyProgram {

... main(args) {

Point p1 = new Point();

p1.x = 7;

p1.y = 2;

Point p2 = new Point();

p2.x = 4;

p2.y = 3;

...

}

}

Point.java (class of objects)

public class Point {

int x;

int y;

}

x 7 y 2

x 4 y 3

Copyright 2008 by Pearson Education
21

MyProgram client example
public class MyProgram {

public static void main(String[] args) {

// create two Point objects

Point p1 = new Point();

p1.y = 2;

Point p2 = new Point();

p2.x = 4;

System.out.println(p1.x + "," + p1.y); // 0,2

// move p2 and then print it

p2.x += 2;

p2.y++;

System.out.println(p2.x + "," + p2.y); // 6,1

}

}

Copyright 2008 by Pearson Education
22

Mini-exercise
 What does this print?

public class MyProgram {

public static void main(String[] args) {

Point p1 = new Point();

Point p2 = new Point();

p1.x = 5;
p2.x = 2*p1.x;

p2.y = 10;

System.out.println(p1.x + ", " + p1.y);

System.out.println(p2.x + ", " + p2.y);

}

}

Copyright 2008 by Pearson Education
23

Mini-exercise - solution
 What does this print?

public class PointMain {

public static void main(String[] args) {

Point p1 = new Point();

Point p2 = new Point();

p1.x = 5;
p2.x = 2*p1.x;

p2.y = 10;

System.out.println(p1.x + ", " + p1.y);

System.out.println(p2.x + ", " + p2.y);

}

}

Result:
5, 0
10, 10

Copyright 2008 by Pearson Education
24

Arrays of objects
 null : A reference that does not refer to any object.

 The elements of an array of objects are initialized to null.

Point[] pts = new Point[5];

String[] words = new String[42];

DrawingPanel[] windows = new DrawingPanel[3];

index 0 1 2 3 4

value null null null null null

index 0 1 2

value null null null

words

windows

Copyright 2008 by Pearson Education
25

Better solution - earthquake

Scanner input = new Scanner(new File("cities.txt"));

int cityCount = input.nextInt();

Point[] coords = new Point[cityCount];

for (int i = 0; i < cityCount; i++) {

Point p = new Point(); // create each point

p.x = input.nextInt(); // read each city

p.y = input.nextInt(); // read each city

coords[i] = p;

}

...

 We replaced the 2 parallel arrays with a single array of Points

 Initially an array with all null, but the second phase of
initialization removes all the nulls

Copyright 2008 by Pearson Education
26

Things you can do w/ null

 store null in a variable or an array element
String s = null;

words[2] = null;

 print a null reference

System.out.println(s); // output: null

 ask whether a variable or array element is null

if (words[i] == null) { ...

 pass null as a parameter to a method

 return null from a method (often to indicate failure)

Copyright 2008 by Pearson Education
27

Null pointer exception
 dereference: To access data or methods of an object with

the dot notation, such as s.length().

 It is illegal to dereference null (causes an exception).

 null is not any object, so it has no methods or data.

String[] words = new String[5];

System.out.println("word is: " + words[0]);

words[0] = words[0].toUpperCase();

Output:
word is: null

Exception in thread "main"
java.lang.NullPointerException

at Example.main(Example.java:8)

Copyright 2008 by Pearson Education
28

Looking before you leap
 You can check for null before calling an object's methods.

String[] words = new String[5];

words[0] = "hello";

words[2] = "goodbye"; // words[1], [3], [4] are null

for (int i = 0; i < words.length; i++) {

if (words[i] != null) {

words[i] = words[i].toUpperCase();

}

}

index 0 1 2 3 4

value null null null
words

“hello” “goodbye”

Copyright 2008 by Pearson Education
29

Two-phase initialization
1) initialize the array itself (each element is initially null)

2) initialize each element of the array to be a new object

String[] words = new String[4]; // phase 1

for (int i = 0; i < words.length; i++) {

words[i] = "word " + i; // phase 2

}

index 0 1 2 3

value
words

“word 0” “word 1” “word 2” “word 3”

