
Copyright 2008 by Pearson Education
1

References and objects
 Arrays and objects use reference semantics. Why?

 efficiency. Copying large objects slows down a program.

 sharing. It's useful to share an object's data among methods.

DrawingPanel panel1 = new DrawingPanel(80, 50);

DrawingPanel panel2 = panel1; // same window

panel2.setBackground(Color.CYAN);

panel1

panel2

Copyright 2008 by Pearson Education
2

Objects as parameters
 When an object is passed as a parameter, the object is not

copied. The parameter refers to the same object.

 The arrow is copied.

 If the parameter is modified, it will affect the original object.

public static void main(String[] args) {

DrawingPanel window = new DrawingPanel(80, 50);

window.setBackground(Color.YELLOW);

example(window);

}

public static void example(DrawingPanel panel) {

panel.setBackground(Color.CYAN);

}

panel

window

Copyright 2008 by Pearson Education

Building Java Programs

Chapter 8

Lecture 8-1: Classes and Objects

reading: 8.1 - 8.3

self-checks: #1-9

exercises: #1-4

Copyright 2008 by Pearson Education
4

A programming problem
 Given a file of cities' (x, y) coordinates,

which begins with the number of cities:
6

50 20

90 60

10 72

74 98

5 136

150 91

 Write a program to draw the cities on a DrawingPanel, then

identify which cities will be affected by an earthquake by coloring
them red

Epicenter x/y? 100 100

Radius of effect? 75

Copyright 2008 by Pearson Education
5

A bad solution

Scanner input = new Scanner(new File("cities.txt"));

int cityCount = input.nextInt();

int[] xCoords = new int[cityCount];

int[] yCoords = new int[cityCount];

for (int i = 0; i < cityCount; i++) {

xCoords[i] = input.nextInt(); // read each city

yCoords[i] = input.nextInt();

}

...

 parallel arrays: 2+ arrays with related data at same indexes.

 Considered poor style: put related data together

Copyright 2008 by Pearson Education
6

Observations
 This problem would be easier to solve if

there were such a thing as a Point object.

 A Point would store a city's x/y data.

 Could compare distances between Points

to see how far a city is from the epicenter.

 Each Point would know how to draw itself.

 The overall program would be shorter and cleaner.

Copyright 2008 by Pearson Education
7

Clients of objects
 client program: A program that uses objects.

 Example: Circles is a client of DrawingPanel and Graphics.

Circles.java (client program)

public class Circles {

main(String[] args) {

new DrawingPanel(...)

new DrawingPanel(...)

...

}

}

DrawingPanel.java (class)

public class DrawingPanel {

...

}

Copyright 2008 by Pearson Education
8

Classes and objects
 class: A program entity that represents either:

1. A program / module, or

2. A template for a new type of objects.

 The DrawingPanel class is a template for creating
DrawingPanel objects.

 object: An entity that combines state and behavior.

 object-oriented programming (OOP): Programs that

perform their behavior as interactions among objects.

Copyright 2008 by Pearson Education
9

Blueprint analogy
iPod blueprint

state:
current song
volume
battery life

behavior:
power on/off
change station/song
change volume
choose random song

iPod #1

state:
song = "1,000,000 Miles"
volume = 17
battery life = 2.5 hrs

behavior:
power on/off
change station/song
change volume
choose random song

iPod #2

state:
song = "Letting You"
volume = 9
battery life = 3.41 hrs

behavior:
power on/off
change station/song
change volume
choose random song

iPod #3

state:
song = "Discipline"
volume = 24
battery life = 1.8 hrs

behavior:
power on/off
change station/song
change volume
choose random song

creates

Copyright 2008 by Pearson Education
10

Abstraction
 abstraction: A distancing between ideas and details.

 We can use objects without knowing how they work.

 abstraction in an iPod:

 You understand its external behavior (buttons, screen).

 You don't understand its inner details, and you don't need to.

Copyright 2008 by Pearson Education
11

Our task
 In the following slides, we will implement a Point class as

a way of learning about classes.

 We will define a type of objects named Point.

 Each Point object will contain x/y data called fields.

 Each Point object will contain behavior called methods.

 Client programs will use the Point objects.

Copyright 2008 by Pearson Education
12

Point objects (desired)
Point p1 = new Point(5, -2);

Point p2 = new Point(); // origin, (0, 0)

 Data in each Point object:

 Methods in each Point object:

Method name Description

setLocation(x, y) sets the point's x and y to the given values

translate(dx, dy) adjusts the point's x and y by the given amounts

distance(p) how far away the point is from point p

draw(g) displays the point on a drawing panel

Field name Description

x the point's x-coordinate

y the point's y-coordinate

Copyright 2008 by Pearson Education
13

Point class as blueprint

 The class (blueprint) describes how to create objects.
 Each object contains its own data and methods.

Point class

state:
int x, y

behavior:
setLocation(int x, int y)

translate(int dx, int dy)

distance(Point p)

draw(Graphics g)

Point object #1

state:
x = 5, y = -2

behavior:
setLocation(int x, int y)
translate(int dx, int dy)
distance(Point p)
draw(Graphics g)

Point object #2

state:
x = -245, y = 1897

behavior:
setLocation(int x, int y)
translate(int dx, int dy)
distance(Point p)
draw(Graphics g)

Point object #3

state:
x = 18, y = 42

behavior:
setLocation(int x, int y)
translate(int dx, int dy)
distance(Point p)
draw(Graphics g)

Copyright 2008 by Pearson Education
14

Object state:
Fields

reading: 8.2

self-check: #5-6

Copyright 2008 by Pearson Education
15

Point class, version 1
public class Point {

int x;

int y;

}

 Save this code into a file named Point.java.

 The above code creates a new type named Point.

 Each Point object contains two pieces of data:

 an int named x, and

 an int named y.

 Point objects do not contain any behavior (yet).

Copyright 2008 by Pearson Education
16

Fields
 field: A variable inside an object that is part of its state.

 Each object has its own copy of each field.

 Part of the object; best not to think of them as variables

 Declaration syntax:

type name;

 Example:

public class Student {

String name; // each Student object has a

double gpa; // name and gpa field

}

Copyright 2008 by Pearson Education
17

Mini-exercise
 Define a class LibraryBook with three fields: one for the

author, one for the title, and one that says whether or not
the book is checked out.

(For simplicity, assume there is always just one author; we
are also ignoring call numbers and so forth.)

Cheat sheet:

public class Student {

String name; // each Student object has a

double gpa; // name and gpa field

}

Copyright 2008 by Pearson Education
18

Mini-exercise - solution
 Define a class LibraryBook with three fields: one for the

author, one for the title, and one that says whether or not
the book is checked out. (For simplicity, assume there is
always just one author; we are also ignoring call numbers
and so forth.)

 Solution:

public class LibraryBook {
String author;
String title;
boolean checkedOut;

}

Copyright 2008 by Pearson Education
19

Accessing fields
 We can access and modify an object's fields.

 access: variable.field

 modify: variable.field = value;

 Example:

Point p1 = new Point();

Point p2 = new Point();

p1.x = 10; // modify

p1.y = 20; // modify

System.out.println(p1.x + "," + p1.y); // access

Output: 10,20

Copyright 2008 by Pearson Education
20

A class and its client
 Point.java is not, by itself, a runnable program.

 A class can be used by client programs.

MyProgram.java (client program)

public class MyProgram {

... main(args) {

Point p1 = new Point();

p1.x = 7;

p1.y = 2;

Point p2 = new Point();

p2.x = 4;

p2.y = 3;

...

}

}

Point.java (class of objects)

public class Point {

int x;

int y;

}

x 7 y 2

x 4 y 3

Copyright 2008 by Pearson Education
21

MyProgram client example
public class MyProgram {

public static void main(String[] args) {

// create two Point objects

Point p1 = new Point();

p1.y = 2;

Point p2 = new Point();

p2.x = 4;

System.out.println(p1.x + "," + p1.y); // 0,2

// move p2 and then print it

p2.x += 2;

p2.y++;

System.out.println(p2.x + "," + p2.y); // 6,1

}

}

Copyright 2008 by Pearson Education
22

Mini-exercise
 What does this print?

public class MyProgram {

public static void main(String[] args) {

Point p1 = new Point();

Point p2 = new Point();

p1.x = 5;
p2.x = 2*p1.x;

p2.y = 10;

System.out.println(p1.x + ", " + p1.y);

System.out.println(p2.x + ", " + p2.y);

}

}

Copyright 2008 by Pearson Education
23

Mini-exercise - solution
 What does this print?

public class PointMain {

public static void main(String[] args) {

Point p1 = new Point();

Point p2 = new Point();

p1.x = 5;
p2.x = 2*p1.x;

p2.y = 10;

System.out.println(p1.x + ", " + p1.y);

System.out.println(p2.x + ", " + p2.y);

}

}

Result:
5, 0
10, 10

Copyright 2008 by Pearson Education
24

Arrays of objects
 null : A reference that does not refer to any object.

 The elements of an array of objects are initialized to null.

Point[] pts = new Point[5];

String[] words = new String[42];

DrawingPanel[] windows = new DrawingPanel[3];

index 0 1 2 3 4

value null null null null null

index 0 1 2

value null null null

words

windows

Copyright 2008 by Pearson Education
25

Better solution - earthquake

Scanner input = new Scanner(new File("cities.txt"));

int cityCount = input.nextInt();

Point[] coords = new Point[cityCount];

for (int i = 0; i < cityCount; i++) {

Point p = new Point(); // create each point

p.x = input.nextInt(); // read each city

p.y = input.nextInt(); // read each city

coords[i] = p;

}

...

 We replaced the 2 parallel arrays with a single array of Points

 Initially an array with all null, but the second phase of
initialization removes all the nulls

Copyright 2008 by Pearson Education
26

Things you can do w/ null

 store null in a variable or an array element
String s = null;

words[2] = null;

 print a null reference

System.out.println(s); // output: null

 ask whether a variable or array element is null

if (words[i] == null) { ...

 pass null as a parameter to a method

 return null from a method (often to indicate failure)

Copyright 2008 by Pearson Education
27

Null pointer exception
 dereference: To access data or methods of an object with

the dot notation, such as s.length().

 It is illegal to dereference null (causes an exception).

 null is not any object, so it has no methods or data.

String[] words = new String[5];

System.out.println("word is: " + words[0]);

words[0] = words[0].toUpperCase();

Output:
word is: null

Exception in thread "main"
java.lang.NullPointerException

at Example.main(Example.java:8)

Copyright 2008 by Pearson Education
28

Looking before you leap
 You can check for null before calling an object's methods.

String[] words = new String[5];

words[0] = "hello";

words[2] = "goodbye"; // words[1], [3], [4] are null

for (int i = 0; i < words.length; i++) {

if (words[i] != null) {

words[i] = words[i].toUpperCase();

}

}

index 0 1 2 3 4

value null null null
words

“hello” “goodbye”

Copyright 2008 by Pearson Education
29

Two-phase initialization
1) initialize the array itself (each element is initially null)

2) initialize each element of the array to be a new object

String[] words = new String[4]; // phase 1

for (int i = 0; i < words.length; i++) {

words[i] = "word " + i; // phase 2

}

index 0 1 2 3

value
words

“word 0” “word 1” “word 2” “word 3”

