
Copyright 2008 by Pearson Education

Building Java Programs

Chapter 7

Lecture 7-3: File Output; Reference Semantics

reading: 6.4-6.5, 7.1, 4.3, 3.3

self-checks: Ch. 7 #19-23

exercises: Ch. 7 #5

Copyright 2008 by Pearson Education
2

Two separate topics

 File output

 A lot like printing to the console

 Pretty easy; needed for homework 7

 References

 Most difficult topic in the whole course

 Arrays (and next week objects) don’t “work” how you probably
think they do!

 May or may not come up in your homework 7 solution

Copyright 2008 by Pearson Education
3

Output to files
 PrintStream: An object in the java.io package that lets

you print output to a destination such as a file.

 Any methods you have used on System.out

(such as print, println) will work on a PrintStream.

 Syntax:

PrintStream name = new PrintStream(new File("file name"));

Example:
PrintStream output = new PrintStream(new File("out.txt"));

output.println("Hello, file!");

output.println("This is a second line of output.");

Copyright 2008 by Pearson Education
4

Details about PrintStream

PrintStream name = new PrintStream(new File("file name"));

 If the given file does not exist, it is created.

 If the given file already exists, it is overwritten.

 The output you print appears in a file, not on the console.

You will have to open the file with an editor to see it.

 Do not open the same file for both reading (Scanner) and

writing (PrintStream) at the same time.

 You will overwrite your input file with an empty file (0 bytes).

Copyright 2008 by Pearson Education
5

System.out and PrintStream

 The console output object, System.out, is a PrintStream.

PrintStream out1 = System.out;

PrintStream out2 = new PrintStream(new File("data.txt"));

out1.println("Hello, console!"); // goes to console

out2.println("Hello, file!"); // goes to file

 A reference to it can be stored in a PrintStream variable.

 Printing to that variable causes console output to appear.

 You can pass System.out as a parameter to a method

expecting a PrintStream.

 Allows methods that can send output to the console or a file.

Copyright 2008 by Pearson Education
6

PrintStream question

 Modify our previous Sections program from last lecture to

use a PrintStream to output to the file sections_out.txt.

Section #1:

Sections attended: [9, 6, 7, 4, 3]

Student scores: [20, 18, 20, 12, 9]

Student grades: [100.0, 90.0, 100.0, 60.0, 45.0]

Section #2:

Sections attended: [6, 7, 5, 6, 4]

Student scores: [18, 20, 15, 18, 12]

Student grades: [90.0, 100.0, 75.0, 90.0, 60.0]

Section #3:

Sections attended: [5, 6, 5, 7, 6]

Student scores: [15, 18, 15, 20, 18]

Student grades: [75.0, 90.0, 75.0, 100.0, 90.0]

Copyright 2008 by Pearson Education
7

PrintStream answer
// Section attendance program
// This version uses a PrintStream for output.

import java.io.*;
import java.util.*;

public class Sections {
public static void main(String[] args) throws FileNotFoundException {

Scanner input = new Scanner(new File("sections.txt"));
PrintStream out = new PrintStream(new File("sections_out.txt"));
while (input.hasNextLine()) { // process one section

String line = input.nextLine();
int[] attended = countAttended(line);
int[] points = computePoints(attended);
double[] grades = computeGrades(points);
results(attended, points, grades, out);

}
}

// Produces all output about a particular section.
public static void results(int[] attended, int[] points,

double[] grades, PrintStream out) {
out.println("Sections attended: " + Arrays.toString(attended));
out.println("Sections scores: " + Arrays.toString(points));
out.println("Sections grades: " + Arrays.toString(grades));
out.println();

}
...

Copyright 2008 by Pearson Education
8

Prompting for a file name
 We can ask the user to tell us the file to read.

 The file name might have spaces; use nextLine(), not next()

// prompt for input file name

Scanner console = new Scanner(System.in);

System.out.print("Type a file name to use: ");

String filename = console.nextLine();

Scanner input = new Scanner(new File(filename));

 What if the user types a file name that does not exist?

Copyright 2008 by Pearson Education
9

Fixing file-not-found issues
 File objects have an exists method we can use:

Scanner console = new Scanner(System.in);

System.out.print("Type a file name to use: ");

String filename = console.nextLine();

File file = new File(filename);

if (!file.exists()) {
// try a second time
System.out.print("Try again: ");
String filename = console.nextLine();
file = new File(filename);

}

Scanner input = new Scanner(file); // open the file

Output:

Type a file name to use: hourz.text

Try again: hours.txt

Copyright 2008 by Pearson Education
10

Arrays as parameters
and returns;

values vs. references

reading: 7.1, 3.3, 4.3

self-checks: Ch. 7 #5, 8, 9

exercises: Ch. 7 #1-10

Copyright 2008 by Pearson Education
11

Swapping values
public static void main(String[] args) {

int a = 42;

int b = 64;

// swap a with b (incorrectly)

a = b;

b = a;

System.out.println(a + " " + b);

}

 What is wrong with this code? What is its output?

 The red code should be replaced with:

int temp = a;

a = b;

b = temp;

Copyright 2008 by Pearson Education
12

A swap method?

 Does the following swap method work? Why or why not?

public static void main(String[] args) {

int a = 42;

int b = 64;

// swap a with b

swap(a, b);

System.out.println(a + " " + b);

}

public static void swap(int a, int b) {

int temp = a;

a = b;

b = temp;

}

Copyright 2008 by Pearson Education
13

Value semantics

 Java parameters are initialized by copying the value

 The parameter is a different variable

 Assigning to a parameter variable has no effect on callers

 So there is no way to write a swap method for two ints

 We learned all this back when we learned parameters
(although we didn’t carefully discuss all the consequences at
that time, to avoid overwhelming you with lots of information
all at once)

Copyright 2008 by Pearson Education
14

Mini-exercise
 What does this print?

public static void main(String[] args) {

int j = 10;

squid(j);

System.out.println(”in main - j = " + j);

}

public static void squid(int k) {

System.out.println("starting squid - k = " + k);

k = 20;

System.out.println(”leaving squid - k = " + k);

}

Copyright 2008 by Pearson Education
15

Mini-exercise - answer
public static void main(String[] args) {

int j = 10;

squid(j);

System.out.println(”in main - j = " + j);

}

public static void squid(int k) {

System.out.println("starting squid - k = " + k);

k = 20;

System.out.println(”leaving squid - k = " + k);

}

Output:
starting squid - k = 10

leaving squid - k = 20

in main - j = 10

Copyright 2008 by Pearson Education
16

Something different
public static void main(String[] args) {

int[] a = new int[2];

a[0] = 42;

a[1] = 64;

swap(a);

System.out.println(a[0] + " " + a[1]);

}

public static void swap(int[] arr) {

int temp = arr[0];

arr[0] = arr[1];

arr[1] = arr[0];

}

 Prints 64 42 – this swap “works”

 The question is why

Copyright 2008 by Pearson Education
17

This doesn’t work
public static void main(String[] args) {

int[] a = new int[2];

a[0] = 42;

a[1] = 64;

swap(a);

System.out.println(a[0] + " " + a[1]);

}

public static void swap(int[] arr) {

int[] x = new int[2];

x[0] = arr[1];

x[1] = arr[0];

arr = x;

}

 Prints 42 64

Copyright 2008 by Pearson Education
18

An analogy you know
1. Dan sends Alan an email attaching the file funPic.jpg.

The file has a picture in it.

2. Alan gets the email and saves the file.

3. Then Alan changes his copy of funPic.jpg to have a
different picture in it.

Is Dan’s file changed? No.

This is how parameters work:

 Dan’s file is like a variable in the caller

 Alan’s file is like a variable in the method called

 Changing the file’s contents is like assigning to a variable

Variables are like files in the analogy

Copyright 2008 by Pearson Education
19

A slightly different analogy

1. Dan sends Alan an email attaching a file that contains the
URL http://somesite.com/editFunPhoto.html

2. Alan gets the email and saves the file.

3. Then Alan follows the link and uses it to change an online
photo.

When Dan follows the link, does he see the new photo? Yes.

This is how arrays work:

 A file with a link in it is like a variable containing a reference
to an array

 Updating an array affects all variables that refer to that array

Array variables are like files holding URLs in the analogy

Copyright 2008 by Pearson Education
20

The truth about new

 new doesn’t actually return an array (or an object)

 It returns a “URL” for a new array (or a new object)

 We call them “references” (or “addresses” or “pointers”)

 A variable never “holds” an array (or an object)

 It always holds a reference to an array (or an object)

 So when we copy the reference (think URL), there are now two
references to the same array

 a[i] = 42; follows the reference and updates the array

 So any other references to the same array see the change

Copyright 2008 by Pearson Education
21

That explains everything
public static void main(String[] args) {

int[] a = new int[2];

a[0] = 42;

a[1] = 64;

swap(a);

System.out.println(a[0] + " " + a[1]);

}

public static void swap(int[] arr) {

int temp = arr[0];

arr[0] = arr[1];

arr[1] = arr[0];

}

0 1
a

arr

Copyright 2008 by Pearson Education
22

Arrows

 Of course, there aren’t really “arrows” inside the computer

 The array is at some “address” (think URL) and a variable
referring to the array holds the “address”

 You don’t care what the address is; it isn’t meaningful

 You do care if two array variables hold the same address

 This is why printing an array variable doesn’t work

 print and println show the address

public static void main(String[] args) {

int[] arr = {42, 64};

System.out.println("array is at address: " + arr);

}

Copyright 2008 by Pearson Education
23

Our wrong example
public static void swap(int[] arr) { // WRONG

int[] x = new int[2];

x[0] = arr[1];

x[1] = arr[0];

arr = x;

}

1. arr refers to some array at some address #1

2. x refers to some new array at some address #2

3. we initialize the contents of the new array

4. we change arr to refer to the new array

 but this has no effect on the caller

Copyright 2008 by Pearson Education
24

A non-parameter example
int[] a1 = {4, 5, 2, 12, 14, 14, 9};

int[] a2 = a1; // refer to same array as a1

a2[0] = 7;

System.out.println(a1[0]); // 7

index 0 1 2 3 4 5 6

value 4 5 2 12 14 14 9

index 0 1 2 3 4 5 6

value 7 5 2 12 14 14 9

a1

a2

Copyright 2008 by Pearson Education
25

Mini-exercise
• What does this print?

public static void main(String[] args) {

int[] xs = new int[10];

int[] ys = xs;

xs[3] = 10;

ys[4] = 20;

System.out.println(ys[3] + ys[4]);

}

Copyright 2008 by Pearson Education
26

Mini-exercise - answer
public static void main(String[] args) {

int[] xs = new int[10];

int[] ys = xs;

xs[3] = 10;

ys[4] = 20;

System.out.println(ys[3] + ys[4]);

}

 Output:

30

Copyright 2008 by Pearson Education
27

Mini-exercise #2
 What does this print?

public static void main(String[] args) {

int[] xs = new int[10];

int[] ys = xs;

int[] zs = new int[10];

xs[0] = 100;

ys[0] = 50;

zs[0] = 20;

System.out.println(xs[0]);

System.out.println(ys[0]);

System.out.println(zs[0]);

}

Copyright 2008 by Pearson Education
28

Mini-exercise #2 - answer
public static void main(String[] args) {

int[] xs = new int[10];

int[] ys = xs;

int[] zs = new int[10];

xs[0] = 100;

ys[0] = 50;

zs[0] = 20;

System.out.println(xs[0]);

System.out.println(ys[0]);

System.out.println(zs[0]);

}

 Output:
50

50

20

Copyright 2008 by Pearson Education
29

A useful parameter example
public static void main(String[] args) {

int[] iq = {126, 167, 95};
doubleAll(iq);
System.out.println(Arrays.toString(iq));

}

public static void doubleAll(int[] a) {
for (int i = 0; i < a.length; i++) {

a[i] = a[i] * 2;
}

}

 Output:
[252, 334, 190]

index 0 1 2

value 126 167 95

index 0 1 2

value 252 334 190

iq

a

