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Line-based
file processing

reading: 6.3

self-check: #7-11

exercises: #1-4, 8-11
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Hours question
 Given a file hours.txt with the following contents:

123 Victoria 12.5 8.1 7.6 3.2

456 Brad 4.0 11.6 6.5 2.7 12

789 Alan 8.0 8.0 8.0 8.0 7.5

 Consider the task of computing hours worked by each person:

Victoria (ID#123) worked 31.4 hours (7.85 hours/day)

Brad (ID#456) worked 36.8 hours (7.36 hours/day)

Alan (ID#789) worked 39.5 hours (7.9 hours/day)

 Let's try to solve this problem token-by-token ...
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Hours answer (flawed)
// This solution does not work!

import java.io.*;               // for File

import java.util.*;             // for Scanner

public class HoursWorked {

public static void main(String[] args)

throws FileNotFoundException {

Scanner input = new Scanner(new File("hours.txt"));

while (input.hasNext()) {

// process one person

int id = input.nextInt();

String name = input.next();

double totalHours = 0.0;

int days = 0;

while (input.hasNextDouble()) {

totalHours += input.nextDouble();

days++;

}

System.out.println(name + " (ID#" + id + 

") worked " + totalHours + " hours (" +

(totalHours / days) + " hours/day)");

}

}

}
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Flawed output
Susan (ID#123) worked 487.4 hours (97.48 hours/day)

Exception in thread "main"

java.util.InputMismatchException

at java.util.Scanner.throwFor(Scanner.java:840)

at java.util.Scanner.next(Scanner.java:1461)

at java.util.Scanner.nextInt(Scanner.java:2091)

at HoursWorked.main(HoursBad.java:9)

 The inner while loop is grabbing the next person's ID.

 We want to process the tokens, but we also care about the line 
breaks (they mark the end of a person's data).

 A better solution is a hybrid approach:

 First, break the overall input into lines.

 Then break each line into tokens.
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Line-based Scanner methods

 nextLine consumes from the input cursor to the next \n .

Scanner input = new Scanner(new File("file name"));

while (input.hasNextLine()) {

String line = input.nextLine();

process this line;

}

Method Description

nextLine() returns the next entire line of input

hasNextLine() returns true if there are any more lines of input 

to read   (always true for console input)
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Line-based scanner mini-exercise

 Write a program that prompts the user for a file name, and 
prints out the contents of that file, line by line.
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Mini-exercise -- solution
/* Prompt the user for a file name and print out the 
contents of the file */
import java.io.*;    // for File                                              
import java.util.*;  // for Scanner                                             
public class PrintFile {

public static void main(String[] args) 
throws FileNotFoundException {

Scanner console = new Scanner(System.in);
System.out.print("File name: ");
String name = console.next();
Scanner fileScan = new Scanner(new File(name));
while (fileScan.hasNextLine()) {

String line = fileScan.nextLine();
System.out.println(line);

}
}

}



Copyright 2008 by Pearson Education
8

Consuming lines of input
23   3.14 John Smith   "Hello world"

45.2 19

 The Scanner reads the lines as follows:

23\t3.14 John Smith\t"Hello world"\n\t\t45.2  19\n

^

 String line = input.nextLine();

23\t3.14 John Smith\t"Hello world"\n\t\t45.2  19\n

^

 String line2 = input.nextLine();

23\t3.14 John Smith\t"Hello world"\n\t\t45.2  19\n

^

 Each \n character is consumed but not returned.
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Scanners on Strings

 A Scanner can tokenize the contents of a String:

Scanner name = new Scanner(String);

 Example:

String text = "15  3.2 hello   9  27.5";

Scanner scan = new Scanner(text);

int num = scan.nextInt();

System.out.println(num);           // 15

double num2 = scan.nextDouble();

System.out.println(num2);          // 3.2

String word = scan.next();

System.out.println(word);          // hello
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Tokenizing lines of a file

// Counts the words on each line of a file

Scanner input = new Scanner(new File("input.txt"));

while (input.hasNextLine()) {

String line = input.nextLine();

Scanner lineScan = new Scanner(line);

// process the contents of this line

int count = 0;

while (lineScan.hasNext()) {

String word = lineScan.next();

count++;

}

System.out.println("Line has " + count + " words");

}

Input file input.txt: Output to console:

The quick brown fox jumps over

the lazy dog.

Line has 6 words

Line has 3 words
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Hours question
 Fix the Hours program to read the input file properly:

123 Victoria 12.5 8.1 7.6 3.2

456 Brad 4.0 11.6 6.5 2.7 12

789 Alan 8.0 8.0 8.0 8.0 7.5

 Recall, it should produce the following output:

Victoria (ID#123) worked 31.4 hours (7.85 hours/day)

Brad (ID#456) worked 36.8 hours (7.36 hours/day)

Alan (ID#789) worked 39.5 hours (7.9 hours/day)



Copyright 2008 by Pearson Education
12

Hours answer, corrected
// Processes an employee input file and outputs each employee's hours.

import java.io.*;    // for File

import java.util.*;  // for Scanner

public class Hours {

public static void main(String[] args) throws FileNotFoundException {

Scanner input = new Scanner(new File("hours.txt"));

while (input.hasNextLine()) {

String line = input.nextLine();

Scanner lineScan = new Scanner(line);

int id = lineScan.nextInt();          // e.g. 456

String name = lineScan.next();        // e.g. "Brad"

double sum = 0.0;

int count = 0;

while (lineScan.hasNextDouble()) {

sum = sum + lineScan.nextDouble();

count++;

}

double average = sum / count;

System.out.println(name + " (ID#" + id + ") worked " +

sum + " hours (" + average + " hours/day)");

}

}

}
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Hours v2 question
 Modify the Hours program to search for a person by ID:

 Example:

Enter an ID: 456

Brad worked 36.8 hours (7.36 hours/day)

 Example:

Enter an ID: 293

ID #293 not found
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Hours v2 answer 1
// This program searches an input file of employees' hours worked

// for a particular employee and outputs that employee's hours data.

import java.io.*;    // for File

import java.util.*;  // for Scanner

public class HoursWorked {

public static void main(String[] args) throws FileNotFoundException {

Scanner console = new Scanner(System.in);

System.out.print("Enter an ID: ");

int searchId = console.nextInt();       // e.g. 456

Scanner input = new Scanner(new File("hours.txt"));

String line = findPerson(input, searchId);

if (line.length() > 0) {

processLine(line);

} else {

System.out.println("ID #" + searchId + " was not found");

}

}

...
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Hours v2 answer 2
// Locates and returns the line of data about a particular person.

public static String findPerson(Scanner input, int searchId) {

while (input.hasNextLine()) {

String line = input.nextLine();

Scanner lineScan = new Scanner(line);

int id = lineScan.nextInt();          // e.g. 456

if (id == searchId) {

return line;                      // we found them!

}

}

return "";           // not found, so return an empty line

}

// Totals the hours worked by the person and outputs their info.

public static void processLine(String line) {

Scanner lineScan = new Scanner(line);

int id = lineScan.nextInt();              // e.g. 456

String name = lineScan.next();            // e.g. "Brad"

double hours = 0.0;

int days = 0;

while (lineScan.hasNextDouble()) {

hours += lineScan.nextDouble();

days++;

}

System.out.println(name + " worked " + hours + " hours ("

+ (hours / days) + " hours/day)");

}

}
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Mixing tokens and lines
 Using nextLine in conjunction with the token-based 

methods on the same Scanner can cause bad results.

23   3.14

Joe   "Hello world"

45.2 19

 You'd think you could read 23 and 3.14 with nextInt and 

nextDouble, then read Joe "Hello world" with nextLine .

System.out.println(input.nextInt());      // 23

System.out.println(input.nextDouble());   // 3.14

System.out.println(input.nextLine());     // 

 But the nextLine call produces no output!  Why?
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Mixing lines and tokens
 Don't read both tokens and lines from the same Scanner: 

23   3.14

Joe   "Hello world"

45.2 19

input.nextInt()                               // 23

23\t3.14\nJoe\t"Hello world"\n\t\t45.2  19\n

^

input.nextDouble() // 3.14

23\t3.14\nJoe\t"Hello world"\n\t\t45.2  19\n

^

input.nextLine() // "" (empty!)

23\t3.14\nJoe\t"Hello world"\n\t\t45.2  19\n

^

input.nextLine() // "Joe\t\"Hello world\""

23\t3.14\nJoe\t"Hello world"\n\t\t45.2  19\n

^
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"Chaining"
 main should be a concise summary of your program.

 It is bad if each method calls the next without ever considering 
that each will eventually return (we call this chaining):

 A better structure has each method do one thing well. 

 Return values to the caller (e.g., main) that can then be 

passed elsewhere. 

main
methodA

methodB
methodC

methodD

main
methodA

methodB
methodC

methodD
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IMDb movies problem
 Consider the following Internet Movie Database (IMDb) 

data:

1 196376 9.1 The Shawshank Redemption (1994)

2 139085 9.0 The Godfather: Part II (1974)

3 81507  8.8 Casablanca (1942)

 Write a program that displays any movies containing a 
phrase:

Search word? part

# Rating Votes  Title

2 9.0 139085 The Godfather: Part II (1974)

40 8.5 129172 The Departed (2006)

95 8.2 20401  The Apartment (1960)

192 8.0 30587  Spartacus (1960)

4 matches.

 (See handout with 3 solutions.)
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Logical pieces

Key pieces:

 Prompt for a phrase

 Search for lines with that phrase

 Scan each matching line and output it

 Output total number of matches

(Complication: Output column titles only if there is a match)

Each key piece is a separate part that can return what 
subsequent parts need
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Chaining vs. Not Chaining

MoviesChaining.java shows bad style:

MoviesTextOutput.java shows better style:

main
getWord

search
display

(print num matches)

main getWord

search

(print num matches)

display



Copyright 2008 by Pearson Education
22

A third version

 We could also plot the results on a DrawingPanel

 You’ll do something similar / more interesting in Homework 6

 See MoviesGraphical.java

 Some particulars for our IMDB program

 top-left 0.0 tick mark at (0, 20)

 ticks 10px tall, 50px apart

 first blue bar top/left corner 

at (0, 70)

 bars 50px tall

 bars 50px wide per rating point

 bars 100px apart vertically
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Mixing graphics and text
 When mixing text/graphics, solve the problem in pieces.

Do the text and file I/O first:

 Display any welcome message and initial console input.

 Open the input file and print some file data.

(Perhaps print every line, the first token of each line, etc.)

 Can take this printing out later.

 Search the input file for the line or lines you want.

Then add the graphical output:

 Draw any fixed graphics that do not depend on the file data.

 Draw the graphics that do depend on the search result.


