
Copyright 2008 by Pearson Education

Line-based
file processing

reading: 6.3

self-check: #7-11

exercises: #1-4, 8-11

Copyright 2008 by Pearson Education
2

Hours question
 Given a file hours.txt with the following contents:

123 Victoria 12.5 8.1 7.6 3.2

456 Brad 4.0 11.6 6.5 2.7 12

789 Alan 8.0 8.0 8.0 8.0 7.5

 Consider the task of computing hours worked by each person:

Victoria (ID#123) worked 31.4 hours (7.85 hours/day)

Brad (ID#456) worked 36.8 hours (7.36 hours/day)

Alan (ID#789) worked 39.5 hours (7.9 hours/day)

 Let's try to solve this problem token-by-token ...

Copyright 2008 by Pearson Education
3

Hours answer (flawed)
// This solution does not work!

import java.io.*; // for File

import java.util.*; // for Scanner

public class HoursWorked {

public static void main(String[] args)

throws FileNotFoundException {

Scanner input = new Scanner(new File("hours.txt"));

while (input.hasNext()) {

// process one person

int id = input.nextInt();

String name = input.next();

double totalHours = 0.0;

int days = 0;

while (input.hasNextDouble()) {

totalHours += input.nextDouble();

days++;

}

System.out.println(name + " (ID#" + id +

") worked " + totalHours + " hours (" +

(totalHours / days) + " hours/day)");

}

}

}

Copyright 2008 by Pearson Education
4

Flawed output
Susan (ID#123) worked 487.4 hours (97.48 hours/day)

Exception in thread "main"

java.util.InputMismatchException

at java.util.Scanner.throwFor(Scanner.java:840)

at java.util.Scanner.next(Scanner.java:1461)

at java.util.Scanner.nextInt(Scanner.java:2091)

at HoursWorked.main(HoursBad.java:9)

 The inner while loop is grabbing the next person's ID.

 We want to process the tokens, but we also care about the line
breaks (they mark the end of a person's data).

 A better solution is a hybrid approach:

 First, break the overall input into lines.

 Then break each line into tokens.

Copyright 2008 by Pearson Education
5

Line-based Scanner methods

 nextLine consumes from the input cursor to the next \n .

Scanner input = new Scanner(new File("file name"));

while (input.hasNextLine()) {

String line = input.nextLine();

process this line;

}

Method Description

nextLine() returns the next entire line of input

hasNextLine() returns true if there are any more lines of input

to read (always true for console input)

Copyright 2008 by Pearson Education
6

Line-based scanner mini-exercise

 Write a program that prompts the user for a file name, and
prints out the contents of that file, line by line.

Copyright 2008 by Pearson Education
7

Mini-exercise -- solution
/* Prompt the user for a file name and print out the
contents of the file */
import java.io.*; // for File
import java.util.*; // for Scanner
public class PrintFile {

public static void main(String[] args)
throws FileNotFoundException {

Scanner console = new Scanner(System.in);
System.out.print("File name: ");
String name = console.next();
Scanner fileScan = new Scanner(new File(name));
while (fileScan.hasNextLine()) {

String line = fileScan.nextLine();
System.out.println(line);

}
}

}

Copyright 2008 by Pearson Education
8

Consuming lines of input
23 3.14 John Smith "Hello world"

45.2 19

 The Scanner reads the lines as follows:

23\t3.14 John Smith\t"Hello world"\n\t\t45.2 19\n

^

 String line = input.nextLine();

23\t3.14 John Smith\t"Hello world"\n\t\t45.2 19\n

^

 String line2 = input.nextLine();

23\t3.14 John Smith\t"Hello world"\n\t\t45.2 19\n

^

 Each \n character is consumed but not returned.

Copyright 2008 by Pearson Education
9

Scanners on Strings

 A Scanner can tokenize the contents of a String:

Scanner name = new Scanner(String);

 Example:

String text = "15 3.2 hello 9 27.5";

Scanner scan = new Scanner(text);

int num = scan.nextInt();

System.out.println(num); // 15

double num2 = scan.nextDouble();

System.out.println(num2); // 3.2

String word = scan.next();

System.out.println(word); // hello

Copyright 2008 by Pearson Education
10

Tokenizing lines of a file

// Counts the words on each line of a file

Scanner input = new Scanner(new File("input.txt"));

while (input.hasNextLine()) {

String line = input.nextLine();

Scanner lineScan = new Scanner(line);

// process the contents of this line

int count = 0;

while (lineScan.hasNext()) {

String word = lineScan.next();

count++;

}

System.out.println("Line has " + count + " words");

}

Input file input.txt: Output to console:

The quick brown fox jumps over

the lazy dog.

Line has 6 words

Line has 3 words

Copyright 2008 by Pearson Education
11

Hours question
 Fix the Hours program to read the input file properly:

123 Victoria 12.5 8.1 7.6 3.2

456 Brad 4.0 11.6 6.5 2.7 12

789 Alan 8.0 8.0 8.0 8.0 7.5

 Recall, it should produce the following output:

Victoria (ID#123) worked 31.4 hours (7.85 hours/day)

Brad (ID#456) worked 36.8 hours (7.36 hours/day)

Alan (ID#789) worked 39.5 hours (7.9 hours/day)

Copyright 2008 by Pearson Education
12

Hours answer, corrected
// Processes an employee input file and outputs each employee's hours.

import java.io.*; // for File

import java.util.*; // for Scanner

public class Hours {

public static void main(String[] args) throws FileNotFoundException {

Scanner input = new Scanner(new File("hours.txt"));

while (input.hasNextLine()) {

String line = input.nextLine();

Scanner lineScan = new Scanner(line);

int id = lineScan.nextInt(); // e.g. 456

String name = lineScan.next(); // e.g. "Brad"

double sum = 0.0;

int count = 0;

while (lineScan.hasNextDouble()) {

sum = sum + lineScan.nextDouble();

count++;

}

double average = sum / count;

System.out.println(name + " (ID#" + id + ") worked " +

sum + " hours (" + average + " hours/day)");

}

}

}

Copyright 2008 by Pearson Education
13

Hours v2 question
 Modify the Hours program to search for a person by ID:

 Example:

Enter an ID: 456

Brad worked 36.8 hours (7.36 hours/day)

 Example:

Enter an ID: 293

ID #293 not found

Copyright 2008 by Pearson Education
14

Hours v2 answer 1
// This program searches an input file of employees' hours worked

// for a particular employee and outputs that employee's hours data.

import java.io.*; // for File

import java.util.*; // for Scanner

public class HoursWorked {

public static void main(String[] args) throws FileNotFoundException {

Scanner console = new Scanner(System.in);

System.out.print("Enter an ID: ");

int searchId = console.nextInt(); // e.g. 456

Scanner input = new Scanner(new File("hours.txt"));

String line = findPerson(input, searchId);

if (line.length() > 0) {

processLine(line);

} else {

System.out.println("ID #" + searchId + " was not found");

}

}

...

Copyright 2008 by Pearson Education
15

Hours v2 answer 2
// Locates and returns the line of data about a particular person.

public static String findPerson(Scanner input, int searchId) {

while (input.hasNextLine()) {

String line = input.nextLine();

Scanner lineScan = new Scanner(line);

int id = lineScan.nextInt(); // e.g. 456

if (id == searchId) {

return line; // we found them!

}

}

return ""; // not found, so return an empty line

}

// Totals the hours worked by the person and outputs their info.

public static void processLine(String line) {

Scanner lineScan = new Scanner(line);

int id = lineScan.nextInt(); // e.g. 456

String name = lineScan.next(); // e.g. "Brad"

double hours = 0.0;

int days = 0;

while (lineScan.hasNextDouble()) {

hours += lineScan.nextDouble();

days++;

}

System.out.println(name + " worked " + hours + " hours ("

+ (hours / days) + " hours/day)");

}

}

Copyright 2008 by Pearson Education
16

Mixing tokens and lines
 Using nextLine in conjunction with the token-based

methods on the same Scanner can cause bad results.

23 3.14

Joe "Hello world"

45.2 19

 You'd think you could read 23 and 3.14 with nextInt and

nextDouble, then read Joe "Hello world" with nextLine .

System.out.println(input.nextInt()); // 23

System.out.println(input.nextDouble()); // 3.14

System.out.println(input.nextLine()); //

 But the nextLine call produces no output! Why?

Copyright 2008 by Pearson Education
17

Mixing lines and tokens
 Don't read both tokens and lines from the same Scanner:

23 3.14

Joe "Hello world"

45.2 19

input.nextInt() // 23

23\t3.14\nJoe\t"Hello world"\n\t\t45.2 19\n

^

input.nextDouble() // 3.14

23\t3.14\nJoe\t"Hello world"\n\t\t45.2 19\n

^

input.nextLine() // "" (empty!)

23\t3.14\nJoe\t"Hello world"\n\t\t45.2 19\n

^

input.nextLine() // "Joe\t\"Hello world\""

23\t3.14\nJoe\t"Hello world"\n\t\t45.2 19\n

^

Copyright 2008 by Pearson Education
18

"Chaining"
 main should be a concise summary of your program.

 It is bad if each method calls the next without ever considering
that each will eventually return (we call this chaining):

 A better structure has each method do one thing well.

 Return values to the caller (e.g., main) that can then be

passed elsewhere.

main
methodA

methodB
methodC

methodD

main
methodA

methodB
methodC

methodD

Copyright 2008 by Pearson Education
19

IMDb movies problem
 Consider the following Internet Movie Database (IMDb)

data:

1 196376 9.1 The Shawshank Redemption (1994)

2 139085 9.0 The Godfather: Part II (1974)

3 81507 8.8 Casablanca (1942)

 Write a program that displays any movies containing a
phrase:

Search word? part

Rating Votes Title

2 9.0 139085 The Godfather: Part II (1974)

40 8.5 129172 The Departed (2006)

95 8.2 20401 The Apartment (1960)

192 8.0 30587 Spartacus (1960)

4 matches.

 (See handout with 3 solutions.)

Copyright 2008 by Pearson Education
20

Logical pieces

Key pieces:

 Prompt for a phrase

 Search for lines with that phrase

 Scan each matching line and output it

 Output total number of matches

(Complication: Output column titles only if there is a match)

Each key piece is a separate part that can return what
subsequent parts need

Copyright 2008 by Pearson Education
21

Chaining vs. Not Chaining

MoviesChaining.java shows bad style:

MoviesTextOutput.java shows better style:

main
getWord

search
display

(print num matches)

main getWord

search

(print num matches)

display

Copyright 2008 by Pearson Education
22

A third version

 We could also plot the results on a DrawingPanel

 You’ll do something similar / more interesting in Homework 6

 See MoviesGraphical.java

 Some particulars for our IMDB program

 top-left 0.0 tick mark at (0, 20)

 ticks 10px tall, 50px apart

 first blue bar top/left corner

at (0, 70)

 bars 50px tall

 bars 50px wide per rating point

 bars 100px apart vertically

Copyright 2008 by Pearson Education
23

Mixing graphics and text
 When mixing text/graphics, solve the problem in pieces.

Do the text and file I/O first:

 Display any welcome message and initial console input.

 Open the input file and print some file data.

(Perhaps print every line, the first token of each line, etc.)

 Can take this printing out later.

 Search the input file for the line or lines you want.

Then add the graphical output:

 Draw any fixed graphics that do not depend on the file data.

 Draw the graphics that do depend on the search result.

