
Copyright 2008 by Pearson Education

Building Java Programs

Chapter 6

Lecture 6-1: File Input with Scanner

reading: 6.1 - 6.2, 5.3

self-check: Ch. 6 #1-6

exercises: Ch. 6 #5-7

videos: Ch. 6 #1-2

Copyright 2008 by Pearson Education
2

Input/output (I/O)
 So far we have used only the console and drawing panels

 Also very common to read or write files

 Similar ideas, especially for text files

 Create a File object to get access to a file on disk.

import java.io.*;

(This does not actually create a new file on the hard disk.)

File f = new File("example.txt");

 See textbook for useful methods in File class (e.g., delete or rename)

 For now, we will just create Scanners that use files

 Will get an exception if the file cannot be found.

Copyright 2008 by Pearson Education
3

Reading files
 To read a file, pass a File when constructing a Scanner.

Scanner name = new Scanner(new File("file name"));

Example:

File file = new File("mydata.txt");

Scanner input = new Scanner(file);

or, more compactly:

Scanner input = new Scanner(new File("mydata.txt"));

Copyright 2008 by Pearson Education
4

File paths
 absolute path: specifies a drive or a top "/" folder

C:/Documents/smith/hw6/input/data.csv

 Windows can also use backslashes to separate folders.

 Macintosh example: /Users/smith/hw6/input/data.csv

 relative path: does not specify any top-level folder
names.dat

input/kinglear.txt

 Assumed to be relative to the current directory:

Scanner input = new Scanner(new File("data/readme.txt"));

 Easiest: Read a file in the same directory as your program with
just "readme.txt".

Copyright 2008 by Pearson Education
5

Compiler error w/ files
 The following program does not compile:

import java.io.*; // for File

import java.util.*; // for Scanner

public class ReadFile {

public static void main(String[] args) {

Scanner input = new Scanner(new File("data.txt"));

String text = input.next();

System.out.println(text);

}

}

 The following error occurs:

ReadFile.java:6: unreported exception java.io.FileNotFoundException;

must be caught or declared to be thrown

Scanner input = new Scanner(new File("data.txt"));

^

Copyright 2008 by Pearson Education
6

Exceptions
 exception: Something representing a runtime error.

 dividing an integer by 0

 calling charAt on a String and passing too large an index

 trying to read the wrong type of value from a Scanner

 trying to read a file that does not exist

 We say that a program with an error "throws" an exception.

 (It’s possible to "catch" (handle) an exception, but we won’t)

 checked exception: An error that must handled unless we

admit it isn’t.

 We must admit our method “won’t work” if the file doesn’t

exist.

Copyright 2008 by Pearson Education
7

The throws clause

 throws clause: Keywords on a method's header to state

that it (or something it calls) may generate an exception.

 Syntax:

public static type name(params) throws type {

 Example:

public class ReadFile {

public static void main(String[] args)

throws FileNotFoundException {

 Like saying, "I hereby announce that this method might throw

an exception, and I accept the consequences if it happens."

Copyright 2008 by Pearson Education
8

Input tokens
 token: A unit of user input, separated by whitespace.

 A Scanner splits a file's contents into tokens.

 If an input file contains the following:

23 3.14

"John Smith"

The Scanner can interpret the tokens as the following types:

Token Type(s)
23 int, double, String
3.14 double, String
"John String

Smith" String

Copyright 2008 by Pearson Education
9

Files and input cursor
 Consider a file numbers.txt that contains this text:

308.2

14.9 7.4 2.8

3.9 4.7 -15.4

2.8

 A Scanner views all input as a stream of characters:

308.2\n 14.9 7.4 2.8\n\n3.9 4.7 -15.4\n 2.8\n

^

 input cursor: The current position of the Scanner.

Copyright 2008 by Pearson Education
10

Consuming tokens
 consuming input: Reading input and advancing the cursor.

 Calling nextInt etc. moves the cursor past the current token.

308.2\n 14.9 7.4 2.8\n\n3.9 4.7 -15.4\n 2.8\n

^

double x = input.nextDouble(); // 308.2

308.2\n 14.9 7.4 2.8\n\n3.9 4.7 -15.4\n 2.8\n

^

String s = input.next(); // "14.9"

308.2\n 14.9 7.4 2.8\n\n3.9 4.7 -15.4\n 2.8\n

^

Copyright 2008 by Pearson Education
11

File input question
 Recall the input file numbers.txt:

308.2

14.9 7.4 2.8

3.9 4.7 -15.4

2.8

 Write a program that reads the first 5 values from the file
and prints them along with their sum.

number = 308.2

number = 14.9

number = 7.4

number = 2.8

number = 3.9

Sum = 337.2

Copyright 2008 by Pearson Education
12

File input answer
// Displays the first 5 numbers in the given file,

// and displays their sum at the end.

import java.io.*; // for File

import java.util.*; // for Scanner

public class Echo {

public static void main(String[] args)

throws FileNotFoundException {

Scanner input = new Scanner(new File("numbers.txt"));

double sum = 0.0;

for (int i = 1; i <= 5; i++) {

double next = input.nextDouble();

System.out.println("number = " + next);

sum = sum + next;

}

System.out.printf("Sum = %.1f\n", sum);

}

}

Copyright 2008 by Pearson Education
13

File input mini-exercise

 Start with the program that reads the first 5 values from
the file and prints them along with their sum. Modify it to
read the first 5 tokens from the file and print them.

Copyright 2008 by Pearson Education
14

Mini-exercise - answer
// Displays the first 5 tokens in the given file.

import java.io.*; // for File

import java.util.*; // for Scanner

public class Echo {

public static void main(String[] args)

throws FileNotFoundException {

Scanner input = new Scanner(new File("stuff.txt"));

for (int i = 1; i <= 5; i++) {

String next = input.next();

System.out.println("token = " + next);

}

}

}

Copyright 2008 by Pearson Education
15

Scanner exceptions
 InputMismatchException

 You read the wrong type of token (e.g. read "hi" as int).

 NoSuchElementException

 You read past the end of the input.

 Finding and fixing these exceptions:

 Read the exception text for line numbers in your code (the first
line that mentions your file; often near the bottom):

Exception in thread "main" java.util.NoSuchElementException

at java.util.Scanner.throwFor(Scanner.java:838)

at java.util.Scanner.next(Scanner.java:1347)

at CountTokens.sillyMethod(CountTokens.java:19)

at CountTokens.main(CountTokens.java:6)

Copyright 2008 by Pearson Education
16

Reading an entire file
 Suppose we want our program to process the entire file.

(It should work no matter how many values are in the file.)

number = 308.2

number = 14.9

number = 7.4

number = 2.8

number = 3.9

number = 4.7

number = -15.4

number = 2.8

Sum = 329.3

 A while-loop, naturally -- but we don’t know yet how to write a useful
test for this situation!

Copyright 2008 by Pearson Education
17

Testing for valid input
 Scanner methods to see what the next token will be:

 These methods do not consume input;

they just give information about the next token.

 Useful to see what input is coming, and to avoid crashes.

Method Description

hasNext() returns true if there are any more tokens of

input to read (always true for console input)

hasNextInt() returns true if there is a next token
and it can be read as an int

hasNextDouble() returns true if there is a next token
and it can be read as a double

Copyright 2008 by Pearson Education
18

Using hasNext methods
 To avoid exceptions:

Scanner console = new Scanner(System.in);

System.out.print("How old are you? ");

if (console.hasNextInt()) {

int age = console.nextInt(); // will not crash!

System.out.println("Wow, " + age + " is old!");

} else {

System.out.println("You didn't type an integer.");

}

 To detect the end of a file:

Scanner input = new Scanner(new File("example.txt"));

while (input.hasNext()) {

String token = input.next(); // will not crash!

System.out.println("token: " + token);

}

Copyright 2008 by Pearson Education
19

File input question 2
 Modify the Echo program to process the entire file:

(It should work no matter how many values are in the file.)

number = 308.2

number = 14.9

number = 7.4

number = 2.8

number = 3.9

number = 4.7

number = -15.4

number = 2.8

Sum = 329.3

Copyright 2008 by Pearson Education
20

File input answer 2
// Displays each number in the given file,

// and displays their sum at the end.

import java.io.*; // for File

import java.util.*; // for Scanner

public class Echo {

public static void main(String[] args)

throws FileNotFoundException {

Scanner input = new Scanner(new File("numbers.txt"));

double sum = 0.0;

while (input.hasNextDouble()) {

double next = input.nextDouble();

System.out.println("number = " + next);

sum = sum + next;

}

System.out.printf("Sum = %.1f\n", sum);

}

}

Copyright 2008 by Pearson Education
21

File input question 3
 Modify the Echo program to handle files that contain non-

numeric tokens (by skipping them).

 For example, it should produce the same output as before
when given this input file, numbers2.txt:

308.2 hello

14.9 7.4 bad stuff 2.8

3.9 4.7 oops -15.4

:-) 2.8 @#*($&

Copyright 2008 by Pearson Education
22

File input answer 3
// Displays each number in the given file,
// and displays their sum at the end.

import java.io.*; // for File
import java.util.*; // for Scanner

public class Echo2 {
public static void main(String[] args)

throws FileNotFoundException {
Scanner input = new Scanner(new File("numbers2.txt"));
double sum = 0.0;
while (input.hasNext()) {

if (input.hasNextDouble()) {
double next = input.nextDouble();
System.out.println("number = " + next);
sum = sum + next;

} else {
input.next(); // throw away the bad token

}
}
System.out.printf("Sum = %.1f\n", sum);

}
}

Copyright 2008 by Pearson Education
23

Searching for something

 A while-loop that returns in the middle of scanning a file is
useful when “looking for something”

 Bad style, and wasteful, to keep reading the rest of the file

 Example: First prime number in a file of integers

Copyright 2008 by Pearson Education
24

Stopping early answer, part 1
import java.io.*; // for File

import java.util.*; // for Scanner

public class FirstPrime {

public static void main(String[] args)

throws FileNotFoundException {

Scanner input = new Scanner(new File("integers.txt"));

int first = scanForPrime(input);

if(first==0) {

System.out.println("No primes were found.");

} else {

System.out.println("First prime was " + first + ".");

}

}

Copyright 2008 by Pearson Education
25

Stopping early answer, part 2
public static int scanForPrime(Scanner s) {
while (s.hasNextInt()) {
int n = s.nextInt();
if(isPrime(n)) {
return n;

}
}
return 0;

}

public static boolean isPrime(int n) {
for(int i=2; i*i <= n; ++i) {
if(n % i == 0) {
return false;

}
}
return true;

}

}

