
Copyright 2008 by Pearson Education
1

Midterm announcements

 Next week on Friday May 8

 Must bring an ID

 Open book, open notes, closed electronics

 Must attend correct section unless you fill out web-site form
in advance

 Sample exam(s) posted Friday

 Another sample in section next week

 And problems on Practice-It!

 Exam will have 2-3 programming problems

 harder, after other problems

 See sample exam(s)

 Review session next week

 Time/place to-be-determined

 probably Thursday late afternoon

Copyright 2008 by Pearson Education
2

Building Java Programs

Chapter 5

Lecture 5-3: Assertions, do/while loops

reading: 5.4 - 5.5

self-check: 22-24, 26-28

Copyright 2008 by Pearson Education
3

Logical assertions
 assertion: A statement that is either true or false.

Examples:

 Java was created in 1995.

 The sky is purple.

 23 is a prime number.

 10 is greater than 20.

 x divided by 2 equals 7. (depends on the value of x)

 An assertion might be false ("The sky is purple" above), but
it is still an assertion because it is a true/false statement.

Copyright 2008 by Pearson Education
4

Reasoning about assertions
 Suppose you have the following code:

if (x > 3) {

// Point A

x--;

} else {

// Point B

x++;

}

// Point C

 What do you know about x's value at the three points?

 Is x > 3? Always? Sometimes? Never?

Copyright 2008 by Pearson Education
5

Assertions in code
 We can make assertions about our code and ask whether they

are true at various points in the code.
 Valid answers are ALWAYS, NEVER, or SOMETIMES.

System.out.print("Type a nonnegative number: ");

double number = console.nextDouble();

// Point A: is number < 0.0 here?

while (number < 0.0) {

// Point B: is number < 0.0 here?

System.out.print("Negative; try again: ");

number = console.nextDouble();

// Point C: is number < 0.0 here?

}

// Point D: is number < 0.0 here?

(SOMETIMES)

(ALWAYS)

(SOMETIMES)

(NEVER)

Copyright 2008 by Pearson Education
6

Reasoning about assertions
 Right after a variable is initialized, its value is known:

int x = 3;

// is x > 0? ALWAYS

 In general you know nothing about parameters' values:
public static void mystery(int a, int b) {

// is a == 10? SOMETIMES

 But inside an if, while, etc., you may know something:
public static void mystery(int a, int b) {

if (a < 0) {

// is a == 10? NEVER

...

}

}

Copyright 2008 by Pearson Education
7

Assertions and loops
 At the start of a loop's body, the loop's test must be true:

while (y < 10) {

// is y < 10? ALWAYS

...

}

 Immediately after a loop, the loop's test must be false:
while (y < 10) {

...

}

// is y < 10? NEVER

 Inside a loop's body, the loop's test may become false:
while (y < 10) {

y++;

// is y < 10? SOMETIMES

}

Copyright 2008 by Pearson Education
8

More on loops

 Remember that a loop might execute 0 or more times

public static void m(int y) {

int x = 0;

while (y < 10) {

++x;

... // no other changes to x

}

// is x > 0? SOMETIMES

}

Copyright 2008 by Pearson Education
9

"Sometimes"
 Things that cause a variable's value to be unknown

(often leads to "sometimes" answers):

 reading from a Scanner

 reading a number from a Random object

 a parameter's initial value to a method

 If you can reach a part of the program both with the
answer being "yes" and the answer being "no", then the
correct answer is "sometimes".

 If you're unsure, "Sometimes" is a good guess.

Copyright 2008 by Pearson Education
10

Perspective

 Assertions are a great way to think about your program

 And what all our language constructs are actually good at

 Purpose of assignments: change whether assertions hold

 Purpose of tests: learn more about what assertions hold

 Purpose of ifs/loops: have different code points for different
possibilities

“If I get here, then x must be less than y, so it’s okay to…”

 (Plus, it’s on the midterm)

Copyright 2008 by Pearson Education
11

Assertion example 0
public static void mystery(int x) {

int y = 10;

// Point A

while (x < y) {

// Point B

x++;

// Point C

}

// Point D

System.out.println(y);

}

x < y x == y

Point A

Point B

Point C

Point D

SOMETIMES SOMETIMES

ALWAYS NEVER

SOMETIMES SOMETIMES

NEVER SOMETIMES

Which of the following assertions are
true at which point(s) in the code?
Choose ALWAYS, NEVER, or SOMETIMES.

Copyright 2008 by Pearson Education
12

Assertion example 1
public static void mystery(int x, int y) {

int z = 0;

// Point A

while (x >= y) {

// Point B

x = x - y;

// Point C

z++;

// Point D

}

// Point E

System.out.println(z);

}

x < y x == y z == 0

Point A

Point B

Point C

Point D

Point E

SOMETIMES SOMETIMES ALWAYS

NEVER SOMETIMES SOMETIMES

SOMETIMES SOMETIMES SOMETIMES

SOMETIMES SOMETIMES NEVER

ALWAYS NEVER SOMETIMES

Which of the following assertions are
true at which point(s) in the code?
Choose ALWAYS, NEVER, or SOMETIMES.

Copyright 2008 by Pearson Education
13

Assertion example 2
public static int mystery(Scanner console) {

int prev = 0;

int count = 0;

int next = console.nextInt();

// Point A

while (next != 0) {

// Point B

if (next == prev) {

// Point C

count++;

}

prev = next;

next = console.nextInt();

// Point D

}

// Point E

return count;

}

next == 0 prev == 0 next == prev

Point A

Point B

Point C

Point D

Point E

SOMETIMES ALWAYS SOMETIMES

NEVER SOMETIMES SOMETIMES

NEVER NEVER ALWAYS

SOMETIMES NEVER SOMETIMES

ALWAYS SOMETIMES SOMETIMES

Which of the following assertions are
true at which point(s) in the code?
Choose ALWAYS, NEVER, or SOMETIMES.

Copyright 2008 by Pearson Education
14

Assertion example 3
// Assumes y >= 0, and returns x^y

public static int pow(int x, int y) {

int prod = 1;

// Point A
while (y > 0) {

// Point B
if (y % 2 == 0) {

// Point C
x = x * x;

y = y / 2;

// Point D
} else {

// Point E
prod = prod * x;

y--;

// Point F
}

}

// Point G
return prod;

}

y > 0 y % 2 == 0

Point A

Point B

Point C

Point D

Point E

Point F

Point G

Which of the following assertions are
true at which point(s) in the code?
Choose ALWAYS, NEVER, or SOMETIMES.

y > 0 y % 2 == 0

Point A SOMETIMES SOMETIMES

Point B ALWAYS SOMETIMES

Point C ALWAYS ALWAYS

Point D ALWAYS SOMETIMES

Point E ALWAYS NEVER

Point F SOMETIMES ALWAYS

Point G NEVER ALWAYS

Copyright 2008 by Pearson Education
15

Another non-useless example
/* This method program prompts the user for numbers until -1 is

typed, then returns the largest number typed (or -1 if

that was the only number typed). */

public static int biggest(Scanner console) {
System.out.print("Type a number (or -1 to quit): ");
int number = console.nextInt();
int max = number;

// max >= number: ALWAYS
while (number != -1) {

// max >= number: SOMETIMES
if (number > max) {

max = number;

}
// max >= number: ALWAYS

System.out.print("Type a number (or -1 to quit): ");
number = console.nextInt();

}
// max >= number: SOMETIMES (!)

return max;

}

}

Copyright 2008 by Pearson Education
16

Another non-useless example
/* Prompts the user for numbers until -1 is typed. Returns the

largest positive number typed. Requires at least one positive.*/

public static int biggest(Scanner console) {
int number = -1;

int max = -1;

while(number <= 0) {

System.out.print("Type a positive number: ");
number = console.nextInt();

}

max = number;

// max >= number: ALWAYS, max > 0: ALWAYS
while (number != -1) {

// max >= number: SOMETIMES, max > 0: ALWAYS
if (number > max) {

max = number;

}
// max >= number: ALWAYS, max > 0: ALWAYS

System.out.print("Type a number (or -1 to quit): ");
number = console.nextInt();

}
// max >= number: ALWAYS, max > 0: ALWAYS

return max;

}

}

Copyright 2008 by Pearson Education
17

while loop variations

reading: 5.4

self-checks: #22-24

exercises: #6

Copyright 2008 by Pearson Education
18

The do/while loop

 do/while loop: Executes statements repeatedly while a

condition is true, testing it at the end of each repetition.

do {

statement(s);
} while (test);

 Example:

// prompt until the user gets the right password

String phrase;

do {

System.out.print("Password: ");

phrase = console.next();

} while (!phrase.equals("abracadabra"));

Copyright 2008 by Pearson Education
19

do/while flow chart

 How does this differ from the while loop?

 The controlled statement(s) will always execute the first
time, regardless of whether the test is true or false.

Copyright 2008 by Pearson Education
20

Thoughts on do/while

 Not used very often; optional in 142

 Affects assertions:

 body always executes at least once

 body executes once before test

public static void m(int y) {

int x = 0;

do {

// is y < 10? SOMETIMES

++x;

... // no other changes to x

} while(y < 10);

// is x > 0? ALWAYS

}

Copyright 2008 by Pearson Education
21

break

 break statement: Immediately exits a loop.

 Can be used to write a loop whose test is in the middle.

 Such loops are often called "forever" loops because their
header's boolean test is often changed to a trivial true.

while (true) {

statement(s);

if (test) {
break;

}

statement(s);
}

 break is often bad style! Do not use it on CSE 142 homework!

Copyright 2008 by Pearson Education
22

Sentinel loop with break

 A working sentinel loop solution using break:

Scanner console = new Scanner(System.in);

int sum = 0;

while (true) {

System.out.print("Enter a number (-1 to quit): ");

int number = console.nextInt();

if (number == -1) { // don't add -1 to sum

break;

}

sum = sum + number; // number != -1 here

}

System.out.println("The total was " + sum);

Copyright 2008 by Pearson Education
23

Thoughts on break

 Literal meaning is go to after the loop right now

 Affects assertions: No longer know the loop test is false
right after the loop

public static void m(int y, int x) {

while(y < 10) {

if(y==x) {

break;

}

++y;

}

// is y >= 10? SOMETIMES

}

 Can also use return anywhere in a method

 Returns right now

