
Copyright 2008 by Pearson Education
1

Building Java Programs

Chapter 5
Lecture 5-2: Random Numbers

reading: 5.1 - 5.2

self-check: #8 - 17

exercises: #3 - 6, 10, 12

videos: Ch. 5 #1-2

Copyright 2008 by Pearson Education
2

The Random class

 A Random object generates pseudo-random* numbers.

 Class Random is found in the java.util package.

import java.util.*;

 Example:

Random rand = new Random();

int randomNumber = rand.nextInt(10); // 0-9

Method name Description

nextInt() returns a random integer

nextInt(max) returns a random integer in the range [0, max)

in other words, 0 to max-1 inclusive

nextDouble() returns a random real number in the range [0.0, 1.0)

Copyright 2008 by Pearson Education
3

Generating random numbers
 Common usage: to get a random number from 1 to N

int n = rand.nextInt(20) + 1; // 1-20 inclusive

 To get a number in arbitrary range [min, max] inclusive:

nextInt(size of range) + min

 where (size of range) is (max - min + 1)

 Example: A random integer between 4 and 10 inclusive:

int n = rand.nextInt(7) + 4;

Copyright 2008 by Pearson Education
4

Random questions

 Given the following declaration, how would you get:

Random rand = new Random();

 A random number between 1 and 100 inclusive?

int random1 = rand.nextInt(100) + 1;

 A random number between 2 and 4 inclusive?

int random2 = rand.nextInt(3) + 2;

 A random number between 50 and 100 inclusive?

int random3 = rand.nextInt(51) + 50;

Copyright 2008 by Pearson Education
5

Random and other types

 nextDouble method returns a double between 0.0 - 1.0

 Example: Get a random value between 2.0 and 6.0:

double r = rand.nextDouble() * 4.0 + 2.0;

 Any finite set of possible values can be mapped to integers

 code to randomly play Rock-Paper-Scissors:

int r = rand.nextInt(3);

if (r == 0) {

System.out.println("Rock");

} else if (r == 1) {

System.out.println("Paper");

} else {

System.out.println("Scissors");

}

Copyright 2008 by Pearson Education
6

Random question

 Write a program that simulates rolling of two 6-sided dice
until their combined result comes up as 7.

2 + 4 = 6

3 + 5 = 8

5 + 6 = 11

1 + 1 = 2

4 + 3 = 7

You won after 5 tries!

Copyright 2008 by Pearson Education
7

Random answer
// Rolls two dice until a sum of 7 is reached.

import java.util.*;

public class Dice {

public static void main(String[] args) {

Random rand = new Random();

int tries = 0;

int sum = 0;

while (sum != 7) {

// roll the dice once

int roll1 = rand.nextInt(6) + 1;

int roll2 = rand.nextInt(6) + 1;

sum = roll1 + roll2;

System.out.println(roll1 + " + " + roll2 + " = " + sum);

tries++;

}

System.out.println("You won after " + tries + " tries!");

}

}

Copyright 2008 by Pearson Education
8

Random question

 Write a multiplication tutor program.
 Ask user to solve problems with random numbers from 1-20.

 The program stops after an incorrect answer.

14 * 8 = 112

Correct!

5 * 12 = 60

Correct!

8 * 3 = 24

Correct!

5 * 5 = 25

Correct!

20 * 14 = 280

Correct!

19 * 14 = 256

Incorrect; the answer was 266

You solved 5 correctly

Last correct answer was 280

 The last line should not appear if the user solves 0 correctly.

Copyright 2008 by Pearson Education
9

Random answer
import java.util.*;

// Asks the user to do multiplication problems and scores them.

public class MultiplicationTutor {

public static void main(String[] args) {

Scanner console = new Scanner(System.in);

Random rand = new Random();

// fencepost solution - pull first question outside of loop

int correct = 0;

int last = askQuestion(console, rand);

int lastCorrect = 0;

// loop until user gets one wrong

while (last > 0) {

lastCorrect = last;

correct++;

last = askQuestion(console, rand);

}

System.out.println("You solved " + correct + " correctly");

if (correct > 0) {

System.out.println("Last correct answer was " + lastCorrect);

}

}

...

Copyright 2008 by Pearson Education
10

Random answer 2
...

// Asks the user one multiplication problem,

// returning the answer if they get it right and 0 if not.

public static int askQuestion(Scanner console, Random rand) {

// pick two random numbers between 1 and 20 inclusive

int num1 = rand.nextInt(20) + 1;

int num2 = rand.nextInt(20) + 1;

System.out.print(num1 + " * " + num2 + " = ");

int guess = console.nextInt();

if (guess == num1 * num2) {

System.out.println("Correct!");

return num1 * num2;

} else {

System.out.println("Incorrect; the correct answer was " +

(num1 * num2));

return 0;

}

}

}

Copyright 2008 by Pearson Education
11

A Big Deal

 Some reasons why computers have changed all of science,
engineering, sociology, politics, economics, …

 They can process tons of data quickly

 They can generate tons of data quickly

 Example: Roll dice 10 million times

 Data generation often requires simulating a process with
randomness

 Because some things (e.g., dice rolls) are random

 Because some things (e.g., disease causes) may not be
random, but it’s the best guess we have

 X% probability of cancer if you smoke

Copyright 2008 by Pearson Education
12

Known vs. unknown solutions

 Sometimes mathematicians have discovered a formula that
gives an exact answer to a probability problem

 Example: Probability two dice sum to 7

 But for more complicated problems sometimes no human
knows!

 “Next best thing”: Try it a lot of times and measure the result

 Use a computer because it’s faster

 Can be easier and more convincing than the math even when
a formula is known

Copyright 2008 by Pearson Education
13

Two Examples

1. Playing roulette with a particular betting strategy

 It turns out a formula exists (it’s a random walk), but
programming a simulation is easy

 And simulation handles “can’t bet more than you have”

2. UrbanSim

 Simulating the inter-related effects of land use and
transportation decisions, and their environmental impact

 Much more complicated than gambling!

Copyright 2008 by Pearson Education
14

Roulette conclusions

 Bet small to play longer

 Bet big to increase your chances of winning

 Best is all at once: 48.3%

 “Can’t bet more than you have” rule leads to surprising
results:

 Given $1000, better off betting $500 than $990

 But more importantly, we learned all this from simulation!

 But always make sure your code is right!

