
Copyright 2008 by Pearson Education
1

Building Java Programs

Chapter 5
Lecture 5-2: Random Numbers

reading: 5.1 - 5.2

self-check: #8 - 17

exercises: #3 - 6, 10, 12

videos: Ch. 5 #1-2



Copyright 2008 by Pearson Education
2

The Random class

 A Random object generates pseudo-random* numbers.

 Class Random is found in the java.util package.

import java.util.*;

 Example:

Random rand = new Random();

int randomNumber = rand.nextInt(10);   // 0-9

Method name Description

nextInt() returns a random integer

nextInt(max) returns a random integer in the range [0, max)

in other words, 0 to max-1 inclusive

nextDouble() returns a random real number in the range [0.0, 1.0)



Copyright 2008 by Pearson Education
3

Generating random numbers
 Common usage: to get a random number from 1 to N

int n = rand.nextInt(20) + 1;   // 1-20 inclusive

 To get a number in arbitrary range [min, max] inclusive:

nextInt(size of range) + min

 where (size of range) is (max - min + 1)

 Example: A random integer between 4 and 10 inclusive:

int n = rand.nextInt(7) + 4;



Copyright 2008 by Pearson Education
4

Random questions

 Given the following declaration, how would you get:

Random rand = new Random();

 A random number between 1 and 100 inclusive?

int random1 = rand.nextInt(100) + 1;

 A random number between 2 and 4 inclusive?

int random2 = rand.nextInt(3) + 2;

 A random number between 50 and 100 inclusive?

int random3 = rand.nextInt(51) + 50;



Copyright 2008 by Pearson Education
5

Random and other types

 nextDouble method returns a double between 0.0 - 1.0

 Example: Get a random value between 2.0 and 6.0:

double r = rand.nextDouble() * 4.0 + 2.0;

 Any finite set of possible values can be mapped to integers

 code to randomly play Rock-Paper-Scissors:

int r = rand.nextInt(3);

if (r == 0) {

System.out.println("Rock");

} else if (r == 1) {

System.out.println("Paper");

} else { 

System.out.println("Scissors");

}



Copyright 2008 by Pearson Education
6

Random question

 Write a program that simulates rolling of two 6-sided dice 
until their combined result comes up as 7.

2 + 4 = 6

3 + 5 = 8

5 + 6 = 11

1 + 1 = 2

4 + 3 = 7

You won after 5 tries!



Copyright 2008 by Pearson Education
7

Random answer
// Rolls two dice until a sum of 7 is reached.

import java.util.*;

public class Dice {

public static void main(String[] args) {

Random rand = new Random();

int tries = 0;

int sum = 0;

while (sum != 7) {

// roll the dice once

int roll1 = rand.nextInt(6) + 1;

int roll2 = rand.nextInt(6) + 1;

sum = roll1 + roll2;

System.out.println(roll1 + " + " + roll2 + " = " + sum);

tries++;

}

System.out.println("You won after " + tries + " tries!");

}

}



Copyright 2008 by Pearson Education
8

Random question

 Write a multiplication tutor program.
 Ask user to solve problems with random numbers from 1-20.

 The program stops after an incorrect answer.

14 * 8 = 112

Correct!

5 * 12 = 60

Correct!

8 * 3 = 24

Correct!

5 * 5 = 25

Correct!

20 * 14 = 280

Correct!

19 * 14 = 256

Incorrect; the answer was 266

You solved 5 correctly

Last correct answer was 280

 The last line should not appear if the user solves 0 correctly.



Copyright 2008 by Pearson Education
9

Random answer
import java.util.*;

// Asks the user to do multiplication problems and scores them.

public class MultiplicationTutor {

public static void main(String[] args) {

Scanner console = new Scanner(System.in);

Random rand = new Random();

// fencepost solution - pull first question outside of loop

int correct = 0;

int last = askQuestion(console, rand);

int lastCorrect = 0;

// loop until user gets one wrong

while (last > 0) {

lastCorrect = last;

correct++;

last = askQuestion(console, rand);

}

System.out.println("You solved " + correct + " correctly");

if (correct > 0) {

System.out.println("Last correct answer was " + lastCorrect);

}

}

...



Copyright 2008 by Pearson Education
10

Random answer 2
...

// Asks the user one multiplication problem,

// returning the answer if they get it right and 0 if not.

public static int askQuestion(Scanner console, Random rand) {

// pick two random numbers between 1 and 20 inclusive

int num1 = rand.nextInt(20) + 1;

int num2 = rand.nextInt(20) + 1;

System.out.print(num1 + " * " + num2 + " = ");

int guess = console.nextInt();

if (guess == num1 * num2) {

System.out.println("Correct!");

return num1 * num2;

} else {

System.out.println("Incorrect; the correct answer was " + 

(num1 * num2));

return 0;

}

}

}



Copyright 2008 by Pearson Education
11

A Big Deal

 Some reasons why computers have changed all of science, 
engineering, sociology, politics, economics, …

 They can process tons of data quickly

 They can generate tons of data quickly

 Example: Roll dice 10 million times

 Data generation often requires simulating a process with 
randomness

 Because some things (e.g., dice rolls) are random

 Because some things (e.g., disease causes) may not be 
random, but it’s the best guess we have 

 X% probability of cancer if you smoke



Copyright 2008 by Pearson Education
12

Known vs. unknown solutions

 Sometimes mathematicians have discovered a formula that 
gives an exact answer to a probability problem

 Example: Probability two dice sum to 7

 But for more complicated problems sometimes no human 
knows!

 “Next best thing”: Try it a lot of times and measure the result

 Use a computer because it’s faster

 Can be easier and more convincing than the math even when 
a formula is known



Copyright 2008 by Pearson Education
13

Two Examples

1. Playing roulette with a particular betting strategy

 It turns out a formula exists (it’s a random walk), but 
programming a simulation is easy

 And simulation handles “can’t bet more than you have”

2. UrbanSim

 Simulating the inter-related effects of land use and 
transportation decisions, and their environmental impact

 Much more complicated than gambling!



Copyright 2008 by Pearson Education
14

Roulette conclusions

 Bet small to play longer

 Bet big to increase your chances of winning

 Best is all at once: 48.3%

 “Can’t bet more than you have” rule leads to surprising 
results:

 Given $1000, better off betting $500 than $990

 But more importantly, we learned all this from simulation!

 But always make sure your code is right!


