
Copyright 2008 by Pearson Education
1

Building Java Programs

Chapter 5
Lecture 5-1: while Loops,

Fencepost Loops, and Sentinel Loops

reading: 4.1, 5.1

self-check: Ch. 4 #2; Ch. 5 # 1-10

exercises: Ch. 4 #2, 4, 5, 8; Ch. 5 # 1-2

Copyright 2008 by Pearson Education
2

A deceptive problem...
 Write a method printNumbers that prints each number

from 1 to a given maximum, separated by commas.

For example, the call:

printNumbers(5)

should print:

1, 2, 3, 4, 5

Copyright 2008 by Pearson Education
3

Flawed solutions
 public static void printNumbers(int max) {

for (int i = 1; i <= max; i++) {

System.out.print(i + ", ");

}

System.out.println(); // to end the line of output

}

 Output from printNumbers(5): 1, 2, 3, 4, 5,

 public static void printNumbers(int max) {

for (int i = 1; i <= max; i++) {

System.out.print(", " + i);

}

System.out.println(); // to end the line of output

}

 Output from printNumbers(5): , 1, 2, 3, 4, 5

Copyright 2008 by Pearson Education
4

Fence post analogy
 We print n numbers but need only n - 1 commas.

 Similar to building a fence with wires separated by posts:

 If we repeatedly place a post + wire,

the last post will have an extra dangling wire.

 A flawed algorithm:

for (length of fence) {

place a post.

place some wire.

}

Copyright 2008 by Pearson Education
5

Fencepost loop
 Add a statement outside the loop to place the initial "post."

 Also called a fencepost loop or a "loop-and-a-half" solution.

 The revised algorithm:

place a post.

for (length of fence - 1) {

place some wire.

place a post.

}

Copyright 2008 by Pearson Education
6

Fencepost method solution
public static void printNumbers(int max) {

System.out.print(1);

for (int i = 2; i <= max; i++) {

System.out.print(", " + i);

}

System.out.println(); // to end the line

}

 Alternate solution: Either first or last "post" can be taken out:

public static void printNumbers(int max) {

for (int i = 1; i <= max - 1; i++) {

System.out.print(i + ", ");

}

System.out.println(max); // to end the line

}

Copyright 2008 by Pearson Education
7

Fencepost mini-exercises
 Write a method printRange that prints all the integers up

to a given maximum in the following format:

 Examples: printRange(5) prints

[1 2 3 4 5]

You can assume that the argument is positive.

 Modify printRange so that the argument can be any
integer. If the integer is negative or zero just print the
brackets:

printRange(0) prints

[]

Copyright 2008 by Pearson Education
8

Fencepost mini-exercise solution 1

public static void printRange(int max) {

System.out.print("[1");

for (int i = 2; i <= max; i++) {

System.out.print(" " + i);

}

System.out.println("]");

}

Copyright 2008 by Pearson Education
9

Fencepost mini-exercise solution 2

// also support zero and negative arguments

public static void printRange(int max) {

System.out.print("[");

if (max>0) {

System.out.print(1);

}

for (int i = 2; i <= max; i++) {

System.out.print(" " + i);

}

System.out.println("]");

}

Copyright 2008 by Pearson Education
10

More fencepost questions
 Write a method printPrimes that prints all prime numbers

up to a given maximum in the following format.

 Example: printPrimes(50) prints

[2 3 5 7 11 13 17 19 23 29 31 37 41 43 47]

 To find primes, write a method countFactors which returns

the number of factors of an integer.
 countFactors(60) returns 12 because

1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, and 60 are factors of 60.

Copyright 2008 by Pearson Education
11

Fencepost answer
public class Primes {

public static void main(String[] args) {

printPrimes(50);

printPrimes(1000);

}

// Prints all prime numbers up to the given max.

public static void printPrimes(int max) {

System.out.print("[2");

for (int i = 3; i <= max; i++) {

if (countFactors(i) == 2) {

System.out.print(" " + i);

}

}

System.out.println("]");

}

Copyright 2008 by Pearson Education
12

Fencepost answer, continued
// Returns how many factors the given number has.

// Note: this is also in ch04-1 slides

public static int countFactors(int number) {

int count = 0;

for (int i = 1; i <= number; i++) {

if (number % i == 0) {

count++; // i is a factor of number

}

}

return count;

}

}

Copyright 2008 by Pearson Education
13

while loops

reading: 5.1

self-check: 1 - 10

exercises: 1 - 2

Copyright 2008 by Pearson Education
14

Categories of loops
 definite loop: Executes a known number of times.

 The for loops we have seen are definite loops.

 Examples:

 Print "hello" 10 times.

 Find all the prime numbers up to an integer n.

 Print each odd number between 5 and 127.

 indefinite loop: One where the number of times its body
repeats is not known in advance.

 Examples:

 Prompt the user until they type a non-negative number.

 Print random numbers until a prime number is printed.

 Repeat until the user has types "q" to quit.

Copyright 2008 by Pearson Education
15

The while loop
 while loop: Repeatedly executes its

body as long as a logical test is true.

while (test) {

statement(s);

}

 Example:
int num = 1; // initialization

while (num <= 200) { // test

System.out.print(num + " ");

num = num * 2; // update

}

 OUTPUT:

1 2 4 8 16 32 64 128

Copyright 2008 by Pearson Education
16

Example while loop
// finds a number's first factor other than 1

Scanner console = new Scanner(System.in);

System.out.print("Type a number: ");

int number = console.nextInt();

int factor = 2;

while (number % factor != 0) {

factor++;

}

System.out.println("First factor: " + factor);

 Example log of execution:

Type a number: 91

First factor: 7

 while is better than for here because we don't know how
many times we will need to increment to find the factor.

Copyright 2008 by Pearson Education
17

for vs. while loops

 The for loop is just a specialized form of the while loop.

 The following loops are equivalent (more or less):

for (int num = 1; num <= 200; num = num * 2) {

System.out.print(num + " ");

}

// actually, not a very compelling use of a while loop

// (a for loop is better because the # of reps is definite)

int num = 1;

while (num <= 200) {

System.out.print(num + " ");

num = num * 2;

}

Copyright 2008 by Pearson Education
18

Mini-exercise
 Convert the following for loop to an almost-equivalent
while loop:

for (int i = 0; i < 10; i++) {

System.out.println(i);

}

Copyright 2008 by Pearson Education
19

Mini-exercise - solution
 Convert the following loop to an equivalent while loop:

for (int i = 0; i < 10; i++) {

System.out.println(i);

}

int i = 0;

while (i < 10) {

System.out.println(i);

i++;

}

Copyright 2008 by Pearson Education
20

Mini-exercise part 2
 Puzzler: when we converted this for loop to a while loop:

for (int i = 0; i < 10; i++) {

System.out.println(i);

}

why might the for loop not be precisely equivalent to the
while loop?

Copyright 2008 by Pearson Education
21

Mini-exercise 2 - solution

for (int i = 0; i < 10; i++) {

System.out.println(i);

}

int i = 0;

while (i < 10) {

System.out.println(i);

i++;

}

These might not totally equivalent, since the integer i is
only within the scope of the for loop body; but in the
while loop it is outside the scope of the while.

Possible fix: rename i to a variable used noplace else.

Copyright 2008 by Pearson Education
22

while and Scanner

 while loops are often used with Scanner input.

 You don't know many times you'll need to re-prompt the user
if they type bad data. (an indefinite loop!)

 Write code that repeatedly prompts until the user types a
non-negative number, then computes its square root.

 Example log of execution:

Type a non-negative integer: -5

Invalid number, try again: -1

Invalid number, try again: -235

Invalid number, try again: -87

Invalid number, try again: 121

The square root of 121 is 11.0

Copyright 2008 by Pearson Education
23

while loop answer
System.out.print("Type a non-negative integer: ");

int number = console.nextInt();

while (number < 0) {

System.out.print("Invalid number, try again: ");

number = console.nextInt();

}

System.out.println("The square root of " + number +

" is " + Math.sqrt(number));

 Notice that number has to be declared outside the loop.

Copyright 2008 by Pearson Education
24

Sentinel loops

reading: 5.1

self-check: 5

exercises: 1, 2

videos: Ch. 5 #4

Copyright 2008 by Pearson Education
25

 sentinel: A value that signals the end of user input.

 sentinel loop: Repeats until a sentinel value is seen.

 Example: A program that repeatedly prompts the user for
numbers until the user types -1, then outputs their sum.

 (In this case, -1 is the sentinel value.)

Enter a number (-1 to quit): 10

Enter a number (-1 to quit): 25

Enter a number (-1 to quit): 35

Enter a number (-1 to quit): -1

The sum is 70

Sentinel values

Copyright 2008 by Pearson Education
26

 Exercise: Write a program that repeatedly prompts the user
for words until the user types "goodbye", then outputs the
longest word that was typed.

 (In this case, "goodbye" is the sentinel value.)

Type a word (or "goodbye" to quit): Obama

Type a word (or "goodbye" to quit): McCain

Type a word (or "goodbye" to quit): Biden

Type a word (or "goodbye" to quit): Palin

Type a word (or "goodbye" to quit): goodbye

The longest word you typed was "McCain" (6 letters)

A second sentinel problem

Copyright 2008 by Pearson Education
27

Flawed sentinel solution
 What's wrong with this solution?

Scanner console = new Scanner(System.in);

String longest = "";

String word = ""; // "dummy value"; anything but "goodbye"

while (!word.equals("goodbye")) {

System.out.print("Type a word (or \"goodbye\" to quit): ");

word = console.next();

if (word.length() > longest.length()) {

longest = word;

}

}

System.out.println("The longest word you typed was \"" +

longest + "\" (" + longest.length() + " letters)");

 The solution produces the wrong output!
The longest word you typed was "goodbye" (7 letters)

Copyright 2008 by Pearson Education
28

The problem
 Our code uses a pattern like this:

longest = empty string.

while (input is not the sentinel) {

prompt for input; read input.

check if input is longest; if so, store it.

}

 On the last pass, the sentinel is added to the sum:

prompt for input; read input ("goodbye").

check if input is longest; if so, store it.

 This is a fencepost problem.

 We must read N words, but only process the first N-1 of them.

Copyright 2008 by Pearson Education
29

A fencepost solution
 We need to use a pattern like this:

longest = empty string.

prompt for input; read input. // place 1st "post"

while (input is not the sentinel) {

check if input is longest; if so, store it. // place a "wire"

prompt for input; read input. // place a "post"

}

 Sentinel loops often utilize a fencepost "loop-and-a-half"

solution by pulling some code out of the loop.

Copyright 2008 by Pearson Education
30

Correct code
 This solution produces the correct output:

Scanner console = new Scanner(System.in);

String longest = "";

// moved one "post" out of loop

System.out.print("Type a word (or \"goodbye\" to quit): ");

String word = console.next();

while (!word.equals("goodbye")) {

if (word.length() > longest.length()) {

longest = word; // moved to top of loop

}

System.out.print("Type a word (or \"goodbye\" to quit): ");

word = console.next();

}

System.out.println("The longest word you typed was \"" +

longest + "\" (" + longest.length() + " letters)");

Copyright 2008 by Pearson Education
31

Constant with sentinel
 A better solution uses a constant for the sentinel:

public static final String SENTINEL = "goodbye";

 This solution uses the constant:
Scanner console = new Scanner(System.in);

System.out.print("Type a word (or \"" + SENTINEL + "\" to quit): ");

String word = console.next();

String longest = "";

while (!word.equals(SENTINEL)) {

if (word.length() > longest.length()) {

longest = word; // moved to top of loop

}

System.out.print("Type a word (or \"" + SENTINEL + "\" to quit): ");

word = console.next();

}

System.out.println("The longest word you typed was \"" +

longest + "\" (" + longest.length() + " letters)");

Copyright 2008 by Pearson Education
32

Sentinel number problem
 Solution to the "sum numbers until -1 is typed" problem:

Scanner console = new Scanner(System.in);

int sum = 0;

System.out.print("Enter a number (-1 to quit): ");

int number = console.nextInt();

while (number != -1) {

sum = sum + number; // moved to top of loop

System.out.print("Enter a number (-1 to quit): ");

number = console.nextInt();

}

System.out.println("The sum is " + sum);

